Home
Class 12
MATHS
If f(x)=root (3)(8x^(3)+mx^(2))-nx such ...

If `f(x)=root (3)(8x^(3)+mx^(2))-nx` such that `lim_(xrarroo)f(x)=1` then (A) `m+n=15` (B) `m-n=10` (C) `m-n=12` (D) `m+n=14`

A

`m+n=15`

B

`m-n=10`

C

`m-n=12`

D

`m+n=14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sqrt[3]{8x^3 + mx^2} - nx \) and find the values of \( m \) and \( n \) such that \( \lim_{x \to \infty} f(x) = 1 \). ### Step-by-Step Solution: 1. **Rewrite the Function**: \[ f(x) = \sqrt[3]{8x^3 + mx^2} - nx \] 2. **Find the Limit as \( x \to \infty \)**: To analyze the limit, we can factor out \( x^3 \) from the cube root: \[ f(x) = \sqrt[3]{x^3(8 + \frac{m}{x})} - nx = x \left( \sqrt[3]{8 + \frac{m}{x}} - n \right) \] 3. **Evaluate the Limit**: As \( x \to \infty \), \( \frac{m}{x} \to 0 \), so: \[ \sqrt[3]{8 + \frac{m}{x}} \to \sqrt[3]{8} = 2 \] Therefore, \[ f(x) \approx x(2 - n) \] 4. **Set the Limit Equal to 1**: For the limit to equal 1, we need: \[ \lim_{x \to \infty} x(2 - n) = 1 \] This implies that \( 2 - n = 0 \) (otherwise the limit would go to infinity), hence: \[ n = 2 \] 5. **Substitute \( n \) Back into the Limit**: Now substituting \( n = 2 \) back into the limit expression: \[ f(x) = \sqrt[3]{8x^3 + mx^2} - 2x \] We rewrite it as: \[ f(x) = x \left( \sqrt[3]{8 + \frac{m}{x}} - 2 \right) \] 6. **Finding \( m \)**: We need to ensure that: \[ \lim_{x \to \infty} x \left( \sqrt[3]{8 + \frac{m}{x}} - 2 \right) = 1 \] Using the expansion \( \sqrt[3]{8 + \frac{m}{x}} \approx 2 + \frac{m}{3 \cdot 2^2 x} \) for large \( x \): \[ \sqrt[3]{8 + \frac{m}{x}} - 2 \approx \frac{m}{12x} \] Thus, \[ x \cdot \frac{m}{12x} = \frac{m}{12} \] Setting this equal to 1 gives: \[ \frac{m}{12} = 1 \implies m = 12 \] 7. **Calculate \( m + n \) and \( m - n \)**: Now we have \( m = 12 \) and \( n = 2 \): \[ m + n = 12 + 2 = 14 \] \[ m - n = 12 - 2 = 10 \] ### Final Results: - \( m + n = 14 \) - \( m - n = 10 \) ### Conclusion: The correct options are: - (A) \( m+n=15 \) - Incorrect - (B) \( m-n=10 \) - Correct - (C) \( m-n=12 \) - Incorrect - (D) \( m+n=14 \) - Correct

To solve the problem, we need to analyze the function \( f(x) = \sqrt[3]{8x^3 + mx^2} - nx \) and find the values of \( m \) and \( n \) such that \( \lim_{x \to \infty} f(x) = 1 \). ### Step-by-Step Solution: 1. **Rewrite the Function**: \[ f(x) = \sqrt[3]{8x^3 + mx^2} - nx \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(m->oo) lim_(n->oo)cos^(2m) n!pix then the range of f(x) is

If lim_(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then the vlaue of (m)/(n) is

(i) lim_(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim_(xrarra) ((1+x)^(1//n)-1)/(x)

If f_1(x)=x ,f_2(x)=1-x ,f_3(x)=1/x ,f_4(x)=1/(1-x),f_5(x)=x/(x-x),f_5(x)=x/(x-1), , f_6(x)=(x-1)/x suppose that f_6(f_m(x))=f_4(x) and f_n(f_4(x))=f_3(x), then m=5 (b) n=5 (c) m=6 (d) n=6

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f'(x)

If [x] denotes the integral part of x and m= [|x|/(1+x^2)],n= integral values of 1/(2-sin3x) then (A) m!=n (B) mgtn (C) m+n=0 (D) n^m=0

If f(x)=2x^3+mx^2-13x+n and 2 and 3 are 2 roots of the equations f(x)=0, then values of m and n are

If f(x)=2x^3+mx^2-13x+n and 2 and 3 are 2 roots of the equations f(x)=0, then values of m and n are

If f(x) = (x^l/x^m)^(l+m) (x^m/x^n)^(m+n) (x^n/x^l)^(n+l) , then find f'(x).

f(1)=1 and f(n)=2sum_(r=1)^(n-1) f (r) . Then sum_(n=1)^mf(n) is equal to (A) 3^m-1 (B) 3^m (C) 3^(m-1) (D)none of these

RESONANCE ENGLISH-TEST SERIES-MATHEMATICS
  1. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  2. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  3. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then (...

    Text Solution

    |

  4. Find the coordinates of the points on the curve y=x^2+3x+4, the tangen...

    Text Solution

    |

  5. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  6. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |

  7. If f(x)=lim(m->oo) lim(n->oo)cos^(2m) n!pix then the range of f(x) is

    Text Solution

    |

  8. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  9. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  10. Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2,...

    Text Solution

    |

  11. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  12. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  13. In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the li...

    Text Solution

    |

  14. In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the li...

    Text Solution

    |

  15. Let f(x) be real valued continuous function on R defined as f(x)=x^(2)...

    Text Solution

    |

  16. Let f(x) be real valued continuous function on R defined as f(x)=x^(2)...

    Text Solution

    |

  17. Let all chords of parabola y^(2)=x+1 which subtends right angle at (1,...

    Text Solution

    |

  18. lim(xrarr(pi)/2)(1-sinxsin3xsin5x.sin7x)/(((pi)/2-x)^(2)) is k then k/...

    Text Solution

    |

  19. If derivative of y=|x-1|^(sinx) at x=-(pi)/2 is (1+api)^(b) then value...

    Text Solution

    |

  20. The value of Sin^-1(sin10) is

    Text Solution

    |