Home
Class 12
MATHS
If derivative of y=|x-1|^(sinx) at x=-(p...

If derivative of `y=|x-1|^(sinx)` at `x=-(pi)/2` is `(1+api)^(b)` then value of `|1/a+4b|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = |x - 1|^{\sin x} \) at \( x = -\frac{\pi}{2} \) and express it in the form \( (1 + a\pi)^b \). Then, we will calculate \( | \frac{1}{a} + 4b | \). ### Step 1: Rewrite the function Since \( x = -\frac{\pi}{2} \) is less than 1, we have: \[ |x - 1| = 1 - x \] Thus, we can rewrite the function as: \[ y = (1 - x)^{\sin x} \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides: \[ \ln y = \sin x \cdot \ln(1 - x) \] ### Step 3: Differentiate both sides Using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(1 - x) + \sin x \cdot \left(-\frac{1}{1 - x}\right) \cdot \frac{d}{dx}(1 - x) \] Since \(\frac{d}{dx}(1 - x) = -1\), we have: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(1 - x) + \frac{\sin x}{1 - x} \] Thus, \[ \frac{dy}{dx} = y \left( \cos x \cdot \ln(1 - x) - \frac{\sin x}{1 - x} \right) \] ### Step 4: Substitute \( x = -\frac{\pi}{2} \) Now we need to evaluate \( \frac{dy}{dx} \) at \( x = -\frac{\pi}{2} \): 1. Calculate \( y \) at \( x = -\frac{\pi}{2} \): \[ y = (1 - (-\frac{\pi}{2}))^{\sin(-\frac{\pi}{2})} = (1 + \frac{\pi}{2})^{-1} = \frac{1}{1 + \frac{\pi}{2}} \] 2. Calculate \( \cos(-\frac{\pi}{2}) \) and \( \sin(-\frac{\pi}{2}) \): \[ \cos(-\frac{\pi}{2}) = 0, \quad \sin(-\frac{\pi}{2}) = -1 \] 3. Substitute into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + \frac{\pi}{2}} \left( 0 \cdot \ln(1 + \frac{\pi}{2}) - \frac{-1}{1 + \frac{\pi}{2}} \right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{1 + \frac{\pi}{2}} \cdot \frac{1}{1 + \frac{\pi}{2}} = \frac{1}{(1 + \frac{\pi}{2})^2} \] ### Step 5: Set the derivative equal to the given form We have: \[ \frac{dy}{dx} = \frac{1}{(1 + \frac{\pi}{2})^2} \] This can be expressed as: \[ \frac{1}{(1 + \frac{\pi}{2})^2} = (1 + a\pi)^b \] From comparing, we can see that \( a = \frac{1}{2} \) and \( b = -2 \). ### Step 6: Calculate \( | \frac{1}{a} + 4b | \) Now we compute: \[ \frac{1}{a} = \frac{1}{\frac{1}{2}} = 2 \] \[ 4b = 4 \cdot (-2) = -8 \] Thus: \[ \frac{1}{a} + 4b = 2 - 8 = -6 \] Finally, we take the absolute value: \[ | \frac{1}{a} + 4b | = |-6| = 6 \] ### Final Answer The value of \( | \frac{1}{a} + 4b | \) is \( 6 \).

To solve the problem, we need to find the derivative of the function \( y = |x - 1|^{\sin x} \) at \( x = -\frac{\pi}{2} \) and express it in the form \( (1 + a\pi)^b \). Then, we will calculate \( | \frac{1}{a} + 4b | \). ### Step 1: Rewrite the function Since \( x = -\frac{\pi}{2} \) is less than 1, we have: \[ |x - 1| = 1 - x \] Thus, we can rewrite the function as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

If the area bounded by y=x, y=sinx and x=(pi)/(2) is ((pi^(2))/(k)-1) sq. units then the value of k is equal to

If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a, b] , then the value of (4a + 64b) is ___

If the derivative of tan^(-1)(a+b x) take the value of 1 at x=0, prove that 1+a^2=bdot

If the derivative of tan^(-1)(a+b x) takes the value 1 at x=0 , prove that 1+a^2=b .

If y= tan^(-1)sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) at x= (pi)/6 is.

If y=(a x-b)/((x-1)(x-4)) has a turning point P(2,-1), find the value of a and b .

If the derivative of tan^(-1)(a+b x) takes the value 1 at x=0, prove that 1+a^2=bdot

Let y=(secx+tanx-1)/(tanx-secx+1) .If ((dy)/(dx))_(x=(pi)/4)=a+sqrt(b) , then value of a+b is equal to

The derivative of cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4) , w.r.t.x is

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

RESONANCE ENGLISH-TEST SERIES-MATHEMATICS
  1. Let all chords of parabola y^(2)=x+1 which subtends right angle at (1,...

    Text Solution

    |

  2. lim(xrarr(pi)/2)(1-sinxsin3xsin5x.sin7x)/(((pi)/2-x)^(2)) is k then k/...

    Text Solution

    |

  3. If derivative of y=|x-1|^(sinx) at x=-(pi)/2 is (1+api)^(b) then value...

    Text Solution

    |

  4. The value of Sin^-1(sin10) is

    Text Solution

    |

  5. f:[0,2pi]rarr[-1,1] and g:[0,2pi]rarr[-1,1] be respectively given by f...

    Text Solution

    |

  6. If solution of cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(xsqrt(6))),x!=0...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Value of limit lim(xrarr0^(+))x^(x^(x)).ln(x) is

    Text Solution

    |

  10. Let A,B and C be square matrices of order 3xx3 with real elements. If ...

    Text Solution

    |

  11. If (a,b) and (c,d) are two points on the whose equation is y=mx+k, the...

    Text Solution

    |

  12. Solve the equation (x)^(2)=[x]^(2)+2x where [x] and (x) are intege...

    Text Solution

    |

  13. Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible i...

    Text Solution

    |

  14. Let P,Q,R and S be the feet of the perpendiculars drawn from point (1,...

    Text Solution

    |

  15. Let [.] denote G.I.F. and tge0 and S={(x,y):(x-T)^(2)+y^(2)leT^(2) whe...

    Text Solution

    |

  16. A function is definded as f(x) = lim( n to oo) {{:(cos^(2n)x, if ...

    Text Solution

    |

  17. If [.] denotes the greatest integer function and x,yepsilonRr,"n" epsi...

    Text Solution

    |

  18. The number of solutions to |e^(|x|)-3|=K is

    Text Solution

    |

  19. Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

    Text Solution

    |

  20. Angle bisector of angles subtended by the chord of a circle in the sam...

    Text Solution

    |