Home
Class 12
MATHS
Let D(r) = |(a,2^(r),2^(16) -1),(b,3(4^(...

Let `D_(r) = |(a,2^(r),2^(16) -1),(b,3(4^(r)),2(4^(16) -1)),(c,7(8^(r)),4(8^(16) -1))|`, then the value of `underset(k =1)overset(16)Sigma D_(k)`, is (a) 0 (b) `a+b+c` (c)`ab+bc+ca` (d) 1

A

0

B

`a+b+c`

C

`ab+bc+ca`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( D_r \) given by: \[ D_r = \begin{vmatrix} a & 2^r & 2^{16} - 1 \\ b & 3 \cdot 4^r & 2 \cdot 4^{16} - 1 \\ c & 7 \cdot 8^r & 4 \cdot 8^{16} - 1 \end{vmatrix} \] and then find the sum \( \sum_{k=1}^{16} D_k \). ### Step 1: Write the determinant for \( D_k \) The determinant \( D_k \) can be expressed as: \[ D_k = \begin{vmatrix} a & 2^k & 2^{16} - 1 \\ b & 3 \cdot 4^k & 2 \cdot 4^{16} - 1 \\ c & 7 \cdot 8^k & 4 \cdot 8^{16} - 1 \end{vmatrix} \] ### Step 2: Expand the determinant Using the properties of determinants, we can expand \( D_k \): \[ D_k = a \begin{vmatrix} 3 \cdot 4^k & 2 \cdot 4^{16} - 1 \\ 7 \cdot 8^k & 4 \cdot 8^{16} - 1 \end{vmatrix} - 2^k \begin{vmatrix} b & 2 \cdot 4^{16} - 1 \\ c & 4 \cdot 8^{16} - 1 \end{vmatrix} + (2^{16} - 1) \begin{vmatrix} b & 3 \cdot 4^k \\ c & 7 \cdot 8^k \end{vmatrix} \] ### Step 3: Analyze the structure of the determinant Notice that the second column of the determinant \( D_k \) contains terms that are functions of \( k \). When we sum \( D_k \) from \( k = 1 \) to \( k = 16 \), the resulting sums will involve sums of powers of 2, 4, and 8. ### Step 4: Calculate the sums 1. **Sum of \( 2^k \)** from \( k=1 \) to \( 16 \): \[ \sum_{k=1}^{16} 2^k = 2(2^{16} - 1) = 2^{17} - 2 \] 2. **Sum of \( 3 \cdot 4^k \)** from \( k=1 \) to \( 16 \): \[ \sum_{k=1}^{16} 3 \cdot 4^k = 3(4(4^{16} - 1)/3) = 4^{17} - 4 \] 3. **Sum of \( 7 \cdot 8^k \)** from \( k=1 \) to \( 16 \): \[ \sum_{k=1}^{16} 7 \cdot 8^k = 7(8(8^{16} - 1)/7) = 8^{17} - 8 \] ### Step 5: Substitute back into the determinant After calculating the sums, we substitute back into the determinant structure. However, we notice that the second column becomes linearly dependent on the third column due to the nature of the sums. ### Step 6: Conclusion Since two columns of the determinant become equal (or linearly dependent), the determinant \( D_k \) evaluates to zero for each \( k \). Thus, the sum \( \sum_{k=1}^{16} D_k = 0 \). ### Final Answer The value of \( \sum_{k=1}^{16} D_k \) is \( 0 \).

To solve the problem, we need to evaluate the determinant \( D_r \) given by: \[ D_r = \begin{vmatrix} a & 2^r & 2^{16} - 1 \\ b & 3 \cdot 4^r & 2 \cdot 4^{16} - 1 \\ c & 7 \cdot 8^r & 4 \cdot 8^{16} - 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

Let (2x^(2)+3x+4)^(10)=sum_(r=0)^(20)a_(r )x^(r ) , then the value of (a_(7))/(a_(13)) is (a) 6 (b) 8 (c) 12 (d) 16

The value of cos(1/2cos^(-1)(1/8)) is (a) 3/4 (b) -3/4 (c) 1/(16) (d) 1/4

If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

If Det(A A^T B)=8 and Det(AB^-1)=8 , then the value of Det(BB^T A^-1) is equal to (A) 1/16 (B) 14 (C) 16 (D) 1

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

The value of cot((7pi)/16)+2cot((3pi)/8)+cot((15pi)/16) is (a) 4 (b) 2 (c) -2 (d) -4

If a >0, then least value of (a^3+a^2+a+1)^2 is (a) 64 a^2 (b) 16 a^4 (c) 16 a^3 (d)d. none of these

Show that 16R^(2)r r_(1) r _(2) r_(3)=a^(2) b ^(2) c ^(2)

If z_1,z_2,z_3,z_4 are imaginary 5th roots of unity, then the value of sum_(r=1)^(16)(z1r+z2r+z3r+z4r),i s 0 (b) -1 (c) 20 (d) 19

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

RESONANCE ENGLISH-TEST SERIES-MATHEMATICS
  1. Statement 1: If e^(xy)+ln(xy)+cos(xy)+5=0, then (dy)/(dx)=-y/x. State...

    Text Solution

    |

  2. A spherical balloon is expanding. If the radius in increasing at the r...

    Text Solution

    |

  3. Let D(r) = |(a,2^(r),2^(16) -1),(b,3(4^(r)),2(4^(16) -1)),(c,7(8^(r)),...

    Text Solution

    |

  4. Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3. Then fi...

    Text Solution

    |

  5. underset(xtooo)lim(e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  6. The equation of the tangent to the curve y=sqrt(9-2x^(2)) at the point...

    Text Solution

    |

  7. Let P and Q be two statements, then ~(~P^^Q)^^(PvvQ) is logically equi...

    Text Solution

    |

  8. If 4sin^(-1)x+cos^(-1)=pi then x equals

    Text Solution

    |

  9. If sum(i=1)^(15)x(i)=45,A=sum(i=1)^(15)(x(i)-2)^(2), B=sum(i=1)^(15)(...

    Text Solution

    |

  10. If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

    Text Solution

    |

  11. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |

  12. The no. of solutions of the equation a^(f(x)) + g(x)=0 where a>0 , and...

    Text Solution

    |

  13. Statement 1: If AnnB=phi then n((AxxB)nn(BxxA))=0 Statement 2: A-(Bu...

    Text Solution

    |

  14. Angle between diagonals of a prallelogramm whose sides are represented...

    Text Solution

    |

  15. The distance between the origin and the tangent to the curve y=e^(2x)+...

    Text Solution

    |

  16. The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2, where [.] denotes grea...

    Text Solution

    |

  17. Consider the following statements Statement 1: The range of log(1)(1...

    Text Solution

    |

  18. System of equations x+2y+z=0, 2x+3y-z=0 and (tantheta)x+y-3z=0 has non...

    Text Solution

    |

  19. If x ,y in R , satisfies the equation ((x-4)^2)/4+(y^2)/9=1 , then th...

    Text Solution

    |

  20. If the sum of the coefficients in the expansion of (2x+3cx+c^(2)x^(2))...

    Text Solution

    |