Home
Class 11
PHYSICS
The length of a rod is 20 cm and area of...

The length of a rod is `20 cm` and area of cross-section `2 cm^(2)`. The Young's modulus of the material of wire is `1.4 xx 10^(11) N//m^(2)`. If the rod is compressed by `5 kg-wt` along its length, then increase in the energy of the rod in joules will be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the principles of elasticity and work done in compressing the rod. ### Given Data: - Length of the rod, \( L = 20 \, \text{cm} = 0.2 \, \text{m} \) - Area of cross-section, \( A = 2 \, \text{cm}^2 = 2 \times 10^{-4} \, \text{m}^2 \) - Young's modulus, \( Y = 1.4 \times 10^{11} \, \text{N/m}^2 \) - Force applied, \( F = 5 \, \text{kg-wt} = 5 \times 9.81 \, \text{N} = 49.05 \, \text{N} \) ### Step 1: Calculate the change in length (\( \Delta L \)) Using the formula for change in length due to stress: \[ \Delta L = \frac{F \cdot L}{A \cdot Y} \] Substituting the values: \[ \Delta L = \frac{49.05 \, \text{N} \cdot 0.2 \, \text{m}}{2 \times 10^{-4} \, \text{m}^2 \cdot 1.4 \times 10^{11} \, \text{N/m}^2} \] ### Step 2: Calculate the denominator Calculating the denominator: \[ 2 \times 10^{-4} \, \text{m}^2 \cdot 1.4 \times 10^{11} \, \text{N/m}^2 = 2.8 \times 10^{7} \, \text{N} \] ### Step 3: Calculate \( \Delta L \) Now substituting back into the equation: \[ \Delta L = \frac{49.05 \, \text{N} \cdot 0.2 \, \text{m}}{2.8 \times 10^{7} \, \text{N}} = \frac{9.81 \times 10^{-2} \, \text{N m}}{2.8 \times 10^{7} \, \text{N}} \approx 3.5 \times 10^{-9} \, \text{m} \] ### Step 4: Calculate the work done (energy increase) The work done (or energy increase) in compressing the rod can be calculated using the formula: \[ E = \frac{1}{2} F \Delta L \] Substituting the values: \[ E = \frac{1}{2} \cdot 49.05 \, \text{N} \cdot 3.5 \times 10^{-9} \, \text{m} \] ### Step 5: Calculate \( E \) Calculating the energy: \[ E = \frac{1}{2} \cdot 49.05 \cdot 3.5 \times 10^{-9} \approx 8.57 \times 10^{-8} \, \text{J} \] ### Final Result The increase in the energy of the rod is approximately: \[ E \approx 8.57 \times 10^{-8} \, \text{J} \text{ or } 8.57 \, \mu J \]

To solve the problem step by step, we will follow the principles of elasticity and work done in compressing the rod. ### Given Data: - Length of the rod, \( L = 20 \, \text{cm} = 0.2 \, \text{m} \) - Area of cross-section, \( A = 2 \, \text{cm}^2 = 2 \times 10^{-4} \, \text{m}^2 \) - Young's modulus, \( Y = 1.4 \times 10^{11} \, \text{N/m}^2 \) - Force applied, \( F = 5 \, \text{kg-wt} = 5 \times 9.81 \, \text{N} = 49.05 \, \text{N} \) ...
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Exercise- 3 PART - IV|9 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 92 illustration|2 Videos
  • ELECTROMAGNETIC INDUCTION

    RESONANCE ENGLISH|Exercise Exercise|43 Videos