Home
Class 11
PHYSICS
A thin rod of negligible mass and area o...

A thin rod of negligible mass and area of corss-section `2xx10^(-6)m^(2)`, suspended vertically from one end, has a length of `0.5m` at `200^(@)C`. The rod is cooled to `0^(@)C`, but length is kept same by attaching a mass at the lower end. The value of this mass is: (Yound's modulus=`10^(11)N//m^(2)`, coefficient of linear expansion = `10^(-5)K^(-1)`).

Text Solution

Verified by Experts

The correct Answer is:
`(i) 4.0 kg
(ii) 0.001 J`

`(mg)/(A) = Yalpha Deltatheta rArr m = (YalphaDeltathetaA)/(g) = 4kg`.
`U = (F^(2)L)/(2AY) = 10^(-3)J`
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Exercise- 3 PART - IV|9 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 92 illustration|2 Videos
  • ELECTROMAGNETIC INDUCTION

    RESONANCE ENGLISH|Exercise Exercise|43 Videos

Similar Questions

Explore conceptually related problems

A thin rod of negligible mass and a cross-section of 2 xx 10^(-6) m^(2) suspended vertically from one end, has a length of 0.5 m at 200^(@)C . The rod is cooled at 0^(@)C , but prevented from contracting by attaching a mass at the lower end. The value of this mass is : (Young's modulus =10^(11) N//m^(2) , Coefficient of linear expansion 10^(-5) K^(-1) and g = 10 m//s^(2) ):

An thin rod of negligible mass and area of cross - section 4xx10^(-6)m^(2) , suspended vertically from one end, has a length of 0.5 m at 100^(@)C . The rod is cooled to 0^(@)C but prevented from contracting by attaching a mass at the lower end. The value of this mass is (Given, coefficient of linear expansion is 10^(-5^(@))C^(-1) , Young's modulus is Y=10^(11)Nm^(-2) and g=10ms^(-2))

A thin rod of negligible mass and area of cross section S is suspended vertically from one end. Length of the rod is L_(0) at T^(@)C . A mass m is attached to the lower end of the rod so that when temperature of the rod is reduced to 0^(@)C its length remains L_(0) Y is the Young’s modulus of the rod and alpha is coefficient of linear expansion of rod. Value of m is :

A wire of length 1 m and area of cross section 2xx10^(-6)m^(2) is suspended from the top of a roof at one end and a load of 20 N is applied at the other end. If the length of the wire is increased by 0.5xx10^(-4)m , calculate its Young’s modulus (in 10^(11)N//m^(2)) .

The pressure that has to be applied to the ends of a steel wire of length 10cm to keep its length constant when its temperature is raised by 100^@C is : (For steel Young's modulus is 2xx10^11 Nm^-2 and coefficient of thermal expansion is 1.1xx10^-5K^_1 )

There is same change in length when a 33000 N tensile force is applied on a steel rod of area of cross-section 10^(-3)m^(2) . The change of temperature reuired to produce the same elongation, if the steel rod is heated , if (The modulus of elasticitay is 3xx10^(11) N//m^(2) and the coefficient of linear expansion of steel is 1.1 xx 10^(-5) //^(@)C ).

Two wires have identical lengths and areas of cross-section are suspended by mass M . Their Young's modulus are in the ratio 2:5 .

A uniform steel wire of cross-sectional area 0.20 mm^2 is held fixed by clamping its two ends. Find the extra force exerted be each clamp on the wire if the wire is cooled from 100^0C to 0^o C . Young's modulus of steel = 2.0 xx 10^11 N m^(-2) . Coefficient of linear expansion of =1.2 xx 10^(-5) C^(-1) .

A light rod AC of length 2.00 m is suspended from the ceiling horizontally by means of two vertical wires of equal length tied to its ends. One of the wires is made of steel and is of cross-section 10^(-3) m^(2) and the other is of brass of cross-section 2xx10^(-3) m^(2) . The position of point D from end A along the rod at which a weight may be hung to produce equal stress in both the wires is [Young's modulus of steel is 2xx10^(11) Nm^(2) and for brass is 1xx10^(11) Nm^(-2) ]

A steel rod of length 1 m is heated from 25^@ "to" 75^@ C keeping its length constant. The longitudinal strain developed in the rod is ( Given, coefficient of linear expansion of steel = 12 xx 10^-6//^@ C ).