Home
Class 12
CHEMISTRY
Solubilities of Ni(OH)(2) and AgCN are S...

Solubilities of `Ni(OH)_(2)` and `AgCN` are `S_(1)` and `S_(2)`. If `K_(sp)[Ni(OH)_(2)]=2xx10^(-15)`
`K_(sp)[AgCN]=6xx10^(-17)`, then

A

`S_(1)gtS_(2)`

B

`S_(1)ltS_(2)`

C

`S_(1)=S_(2)`

D

Data is insufficient

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the solubilities \( S_1 \) and \( S_2 \) for \( Ni(OH)_2 \) and \( AgCN \) respectively, using their solubility product constants \( K_{sp} \). ### Step 1: Calculate \( S_1 \) for \( Ni(OH)_2 \) 1. **Write the dissociation equation:** \[ Ni(OH)_2 (s) \rightleftharpoons Ni^{2+} (aq) + 2OH^{-} (aq) \] 2. **Define solubility:** Let the solubility of \( Ni(OH)_2 \) be \( S_1 \). Then, at equilibrium: - \( [Ni^{2+}] = S_1 \) - \( [OH^{-}] = 2S_1 \) 3. **Write the expression for \( K_{sp} \):** \[ K_{sp} = [Ni^{2+}][OH^{-}]^2 = S_1 (2S_1)^2 = S_1 \cdot 4S_1^2 = 4S_1^3 \] 4. **Substitute the given \( K_{sp} \):** \[ 4S_1^3 = 2 \times 10^{-15} \] 5. **Solve for \( S_1 \):** \[ S_1^3 = \frac{2 \times 10^{-15}}{4} = 0.5 \times 10^{-15} = 5 \times 10^{-16} \] \[ S_1 = (5 \times 10^{-16})^{1/3} \approx 0.79 \times 10^{-5} \text{ M} \] ### Step 2: Calculate \( S_2 \) for \( AgCN \) 1. **Write the dissociation equation:** \[ AgCN (s) \rightleftharpoons Ag^{+} (aq) + CN^{-} (aq) \] 2. **Define solubility:** Let the solubility of \( AgCN \) be \( S_2 \). Then, at equilibrium: - \( [Ag^{+}] = S_2 \) - \( [CN^{-}] = S_2 \) 3. **Write the expression for \( K_{sp} \):** \[ K_{sp} = [Ag^{+}][CN^{-}] = S_2 \cdot S_2 = S_2^2 \] 4. **Substitute the given \( K_{sp} \):** \[ S_2^2 = 6 \times 10^{-17} \] 5. **Solve for \( S_2 \):** \[ S_2 = (6 \times 10^{-17})^{1/2} \approx 7.75 \times 10^{-9} \text{ M} \] ### Step 3: Compare \( S_1 \) and \( S_2 \) Now we have: - \( S_1 \approx 0.79 \times 10^{-5} \) - \( S_2 \approx 7.75 \times 10^{-9} \) Since \( 0.79 \times 10^{-5} > 7.75 \times 10^{-9} \), we can conclude that: \[ S_1 > S_2 \] ### Final Answer: The solubility of \( Ni(OH)_2 \) is greater than that of \( AgCN \), i.e., \( S_1 > S_2 \). ---

To solve the problem, we need to calculate the solubilities \( S_1 \) and \( S_2 \) for \( Ni(OH)_2 \) and \( AgCN \) respectively, using their solubility product constants \( K_{sp} \). ### Step 1: Calculate \( S_1 \) for \( Ni(OH)_2 \) 1. **Write the dissociation equation:** \[ Ni(OH)_2 (s) \rightleftharpoons Ni^{2+} (aq) + 2OH^{-} (aq) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the ratio of moles of Mg(OH)_(2) and Al(OH)_(3) , present in 1L saturated solution of Mg(OH)_(2) and Al(OH)_(3) K_(sp) of Mg(OH)_(2)=4xx10^(-12) and K_(sp) of Al(OH)_(3)=1xx10^(-33) .[Report answer by multiplying 10^(-18)]

Compare the solubility of Fe(OH)_(3) (K_(sp) = 4 xx 10^(-38)) and Ni(OH)_(2).(K_(sp) = 2 xx 10^(-16)) at pH = 5.0

Calculate the molar solubility of Fe(OH)_(3) in a buffer solution that is 0.1M in NH_(4)OH and 0.1M in NH_(4)Cl (K_(b) of NH_(4)OH=1.8xx10^(-5) , K_(sp) of Fe(OH)_(3)=2.6xx10^(-39) )

What is the molar solubility of AgCl(s) in 0.1 M NH_(3)(aq)?K_(sp)(AgCl)=1.8xx10^(-10), K_(f)[Ag(NH_(3))_(2)]^(+)=1.6xx10^(7).

The solubility of Mg(OH)_(2) is increased by the addition of overset(o+)NH_(4) ion. Calculate a. Kc for the reaction: Mg(OH)_(2) +2overset(o+)NH_(4) hArr 2NH_(3) +2H_(2)O + Mg^(+2) K_(sp) of Mg(OH)_(2) = 6 xx 10^(-12), K_(b) of NH_(3) = 1.8 xx 10^(-5) . b. Find the solubility of Mg(OH)_(2) in a solution containing 0.5M NH_(4)C1 before addition of Mg(OH)_(2) .b

Determine the solubility of Cr(OH)_(3) in mol L^(-1) , If its K_(sp) is 2.7 xx 10^(-31) M^(4) .

Solubility of Al(OH)_3 in decimolar KOH solution (K_(sp) of Al(OH)_3=1.90×10^-(33)) is

Freshly prepared aluminium and magnesium hydroxides are stirred vigorously in a buffer solution containing 0.25M of ammonium chloride and 0.05M of ammonium hydroxide. Calculate the concentration of aluminium and magesium ions in solution (K_(b) NH_(4)OH = 1.8 xx 10^(-5), K_(sp) Mg(OH)_(2) = 6 xx 10^(-10), K_(sp) Al(OH)_(3) = 6 xx 10^(-32) .

The values of K_(sp) of two sparingly solubles salts, Ni(OH)_(2) and AgCN are 2.0 xx 10^(-15) and 6 xx 10^(-7) respectively, which salt is more soluble? Explain

Calculate simultaneous solubility of AgCNS and AgBr in a solution of water. (K_(SP)of AgBr = 5xx10^(-13) and K_(SP)of AgCNS = 1xx10^(-12))