Home
Class 12
CHEMISTRY
The standard free energy change of the r...

The standard free energy change of the reaction `Cu^(2+)+Sn(s)rarrCu(s)+Sn^(2+)`
Given : `E^(@)=0.48V`) is:

A

`-31.8KJmol^(-1)`

B

`-62.1KJmol^(-1)`

C

`-79.2KJmol^(-1)`

D

`-92.64KJmol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard free energy change (ΔG°) for the reaction \( \text{Cu}^{2+} + \text{Sn}(s) \rightarrow \text{Cu}(s) + \text{Sn}^{2+} \), we can use the relationship between Gibbs free energy and the standard cell potential (E°) given by the formula: \[ \Delta G^\circ = -nFE^\circ \] Where: - \( n \) = number of moles of electrons transferred in the reaction - \( F \) = Faraday's constant (approximately \( 96500 \, \text{C/mol} \)) - \( E^\circ \) = standard cell potential (given as \( 0.48 \, \text{V} \)) ### Step 1: Determine the number of electrons transferred (n) In the given reaction, copper ions (\( \text{Cu}^{2+} \)) are reduced to copper metal (\( \text{Cu} \)), and tin metal (\( \text{Sn} \)) is oxidized to tin ions (\( \text{Sn}^{2+} \)). - The reduction half-reaction for copper is: \[ \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \] - The oxidation half-reaction for tin is: \[ \text{Sn} \rightarrow \text{Sn}^{2+} + 2e^- \] From both half-reactions, we see that 2 electrons are transferred in total. Therefore, \( n = 2 \). ### Step 2: Substitute values into the formula Now, we can substitute the values into the Gibbs free energy equation: \[ \Delta G^\circ = -nFE^\circ \] Substituting the known values: - \( n = 2 \) - \( F = 96500 \, \text{C/mol} \) - \( E^\circ = 0.48 \, \text{V} \) \[ \Delta G^\circ = -2 \times 96500 \, \text{C/mol} \times 0.48 \, \text{V} \] ### Step 3: Calculate ΔG° Now, we perform the calculation: \[ \Delta G^\circ = -2 \times 96500 \times 0.48 \] Calculating this step-by-step: 1. Calculate \( 96500 \times 0.48 = 46320 \) 2. Now multiply by 2: \( 2 \times 46320 = 92640 \) 3. Apply the negative sign: \( \Delta G^\circ = -92640 \, \text{J/mol} \) ### Step 4: Convert to kilojoules Since the answer is typically expressed in kilojoules per mole, we convert joules to kilojoules: \[ \Delta G^\circ = -92640 \, \text{J/mol} \div 1000 = -92.64 \, \text{kJ/mol} \] ### Final Answer Thus, the standard free energy change for the reaction is: \[ \Delta G^\circ = -92.64 \, \text{kJ/mol} \]

To calculate the standard free energy change (ΔG°) for the reaction \( \text{Cu}^{2+} + \text{Sn}(s) \rightarrow \text{Cu}(s) + \text{Sn}^{2+} \), we can use the relationship between Gibbs free energy and the standard cell potential (E°) given by the formula: \[ \Delta G^\circ = -nFE^\circ \] Where: - \( n \) = number of moles of electrons transferred in the reaction ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate standard free energy change for the reaction 2Ag+2H^(+)rarrH_(2)+2Ag^(+) Given : E_(Ag^(+)//Ag)^(@)=+0.80V

Calculate the standard free enegry change for the reaction: Zn + Cu^(2+)(aq) rarr Cu+Zn^(2+) (aq), E^(Theta) = 1.20V

Calculate the standard free energy change for the following reaction Zn(s) + Cu^(2+)(aq) to Zn^(2+) (aq) + Cu(s) Given : Delta_fG^@ [Cu^(2+)(aq)] = 65.0kJ mol^(-1) Delta_f G^@ [ Zn^(2+) (aq)] = -147.2 kJ mol^(-1)

Calculate the standard free energy change in kJ for the reaction Cu^(+) +I^(-) to CuI Given: CuI + e to Cu+I^(-) E^(0)=-0.17V Cu^(+)+e to Cu E^(0)=0.53V

Compute the standard free energy chagne (DeltaG^(@)) for the process Zn^(2+)(aq)+2e^(-)rarrZn(s) : E^(@)Zn^(2+)=-0.76V

The standard Gibbs free energy change (in joule) for the given cell reaction is Mg(s) + Ni^(2+) to Mg^(2+)(aq) + Ni(s) (Given: E_((mg)^(2+)/(mg))^@ = - 2.36 V , E_((NI)^(2+)/(NI))^@ = -0.25 V,

The standard electrode potential for the reactions, Ag^(+)(aq)+e^(-) rarr Ag(s) Sn^(2+)(aq)+2e^(-) rarr Sn(s) at 25^(@)C are 0.80 volt and -0.14 volt, respectively. The emf of the cell Sn|Sn^(2+)(1M)||Ag^(+)(1M)Ag is :

The standard potential E^(@) for the half reactions are as : Zn rarr Zn^(2+) + 2e^(-), E^(@) = 0.76V Cu rarr Cu^(2+) +2e^(-) , E^(@) = -0.34 V The standard cell voltage for the cell reaction is ? Zn +Cu^(2) rarr Zn ^(2+) +Cu

The Gibbs energy change (in J) for the given reaction at [Cu^(2+) ] = [Sn^(2+) ] = 1 M and 298 K is : Cu (s) + Sn^(2+) (aq) to Cu^(2+) (aq.) + Sn(s), (E_(Sn^(2+) // Sn)^(0) = -0.16 V E_(Cu^(2+) |Cu)^(0) = 0.34 V , Take F = 96500 C mol^(-1) )

Given that standard potential for the following half - cell reaction at 298 K, Cu^(+)(aq)+e^(-)rarr Cu(s), E^(@)=0.52V Cu^(2+)(aq)+e^(-)rarrCu^(+)(aq), E^(@)=0.16V Calculate the DeltaG^(@)(kJ) for the eaction, [2Cu^(+)(aq)rarr Cu(s)+Cu^(2+)]