Home
Class 12
CHEMISTRY
Molar conductivity of aqueous solution o...

Molar conductivity of aqueous solution of `HA` is `200Scm^(2)mol^(-1),pH` of this solution is `4`
Calculate the value of `pK_(a)(HA)` at `25^(@)C`.
Given `^^_(M)^(oo)(NaA)=100scm^(2)mol^(-1),`
`^^_(M)^(oo)(HCl)=425Scm^(2)mol^(-1),`
`^^_(M)^(oo)(NaCl)=125 Scm^(2)mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will calculate the value of \( pK_a \) for the weak acid \( HA \) given the molar conductivity, pH, and other provided values. ### Step 1: Calculate the Molar Conductivity at Infinite Dilution (\( \lambda_m^{\infty} \)) for \( HA \) According to Kohlrausch's Law, the molar conductivity at infinite dilution for \( HA \) can be calculated using the following equation: \[ \lambda_m^{\infty}(HA) = \lambda_m^{\infty}(HCl) + \lambda_m^{\infty}(NaA) - \lambda_m^{\infty}(NaCl) \] Substituting the given values: \[ \lambda_m^{\infty}(HA) = 425 \, \text{S cm}^2 \text{mol}^{-1} + 100 \, \text{S cm}^2 \text{mol}^{-1} - 125 \, \text{S cm}^2 \text{mol}^{-1} \] Calculating this gives: \[ \lambda_m^{\infty}(HA) = 425 + 100 - 125 = 400 \, \text{S cm}^2 \text{mol}^{-1} \] ### Step 2: Calculate the Concentration of \( H^+ \) Ions Given that the pH of the solution is 4, we can find the concentration of \( H^+ \) ions using the formula: \[ [H^+] = 10^{-pH} \] Substituting the value of pH: \[ [H^+] = 10^{-4} \, \text{mol/L} \] ### Step 3: Calculate the Degree of Dissociation (\( \alpha \)) The degree of dissociation \( \alpha \) can be calculated using the formula: \[ \alpha = \frac{\lambda_m}{\lambda_m^{\infty}(HA)} \] Substituting the values: \[ \alpha = \frac{200 \, \text{S cm}^2 \text{mol}^{-1}}{400 \, \text{S cm}^2 \text{mol}^{-1}} = 0.5 \] ### Step 4: Calculate the Ionization Constant (\( K_a \)) The ionization constant \( K_a \) can be calculated using the formula: \[ K_a = \frac{C \alpha^2}{1 - \alpha} \] Where \( C \) is the concentration of the acid, which is equal to \( [H^+] = 10^{-4} \, \text{mol/L} \). Substituting the values: \[ K_a = \frac{(10^{-4}) (0.5)^2}{1 - 0.5} \] Calculating this gives: \[ K_a = \frac{10^{-4} \cdot 0.25}{0.5} = \frac{10^{-4} \cdot 0.25}{0.5} = 0.5 \times 10^{-4} = 2.5 \times 10^{-5} \] ### Step 5: Calculate \( pK_a \) Finally, we can calculate \( pK_a \) using the formula: \[ pK_a = -\log(K_a) \] Substituting the value of \( K_a \): \[ pK_a = -\log(2.5 \times 10^{-5}) \] Using a calculator: \[ pK_a \approx 4.6 \] ### Final Answer Thus, the value of \( pK_a(HA) \) at \( 25^\circ C \) is approximately **4.6**.

To solve the problem step by step, we will calculate the value of \( pK_a \) for the weak acid \( HA \) given the molar conductivity, pH, and other provided values. ### Step 1: Calculate the Molar Conductivity at Infinite Dilution (\( \lambda_m^{\infty} \)) for \( HA \) According to Kohlrausch's Law, the molar conductivity at infinite dilution for \( HA \) can be calculated using the following equation: \[ \lambda_m^{\infty}(HA) = \lambda_m^{\infty}(HCl) + \lambda_m^{\infty}(NaA) - \lambda_m^{\infty}(NaCl) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

pH of 0.01 M aq. solution of HA is 4. Find the value of pK_(a) of HA at 25^(@)C.

The molar conductivity of 0.25 mol L^(-1) methanoic acid is 46.1 S cm^(2) mol^(-1) . Calculate the degree of dissociation constant. Given : lambda_((H^(o+)))^(@)=349.6S cm^(2)mol^(-1) and lambda_(HCOO^(-))^(@)=54.6Scm^(2)mol^(-1)

Molar conductance of 1M solution of weak acid HA is 20 ohm^(-1) cm^(2) mol^(-1) . Find % dissocation of HA: (^^_(m)^(o)(H^(+)) =350 S cm^(2) mol^(-1)),(^^_(m)^(o)(A^(-)) =50 S cm^(2) mol^(-1))

Calculate degree of dissociation of 0.02 M acetic acid at 298 K given that mho_(m)(CH_(3)COOH)=17.37 cm^(2) mol^(-1),lambda_(m)^(@)(H+)=345.8 S cm^(2) mol^(-1), lambda_(m)^(@)(CH_(3)COO^(-))=40.2 Scm^(2) mol^(-1)

Molar conductivity of a solution of an electrolyte AB_3 is 150 Scm^2mol^(-1) . If it ionises as AB_(3)toA^(3+)+3B^(-) , its equivalent conductivity will be :

The molar conductivity of a 1.5 M solution of an electrolyte is found to be 138.9 S cm^(2) mol^(-1) . Calculate the conductivity of this solution.

The molar conductivity of a 1.5 M solution of an electrolyte is found to be 138.9 S cm^(2) mol^(-1) . Calculate the conductivity of this solution.

Conductivity of an aqueous solution of 0.1M HX (a weak mono-protic acid) is 5 xx 10^(-4) Sm^(-1) Given: ^^_(m)^(oo) [H^(+)] = 0.04 Sm^(2) mol^(-1): ^^_(m)^(oo) [X^(-)] = 0.01 Sm^(2)mol^(-1) Find pK_(a)[HX]

What is the value of pK_(b)(CH_(3)COO^(c-)) if wedge^(@)._(m)=390 S cm^(-1) mol ^(-1) and wedge_(m)=7.8 S cm^(2) mol^(-1) for 0.04 M of CH_(3)COOH at 25^(@)C ?

Calculate the value of equivalent conductivity of MgCl_(2) at infinite dilution if lambda^(oo)(Mg^(2+))= 106.12 "ohm"^(-1)cm^(-2)"mol"^(-1), lambda^(oo)(Cl^(-))=76.34"ohm"^(-1)cm^(2)"mol"^(-1) .