Home
Class 12
PHYSICS
Find the amplitude of the simple harmoni...

Find the amplitude of the simple harmonic motion obtasined by combining the motions
`x_1=(2.0 cm) sinomegat`
` and x_2=(2.0cm)sin(omegat+pi/3)`

Text Solution

Verified by Experts

The two equations given represent simple harmonic motions along `X-`axis with amplitudes `A_(1) = 2.0 cm` and `A_(2) = 2.0 cm`. The phase difference between the two simple harmonic motions is `pi//3`. The resultant simple harmonic motion will have an amplittude A given by
`A = sqrt(A_(1)^(2) - A_(2)^(2) + 2A_(1)A_(2)cosdelta) = sqrt((2.0cm)^(2) + (2.0cm)^(2) + 2(2.0cm)^(2) + cos'(pi)/(3)) = 3.5 cm`
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    RESONANCE ENGLISH|Exercise Solved Miscellaneous Problems|9 Videos
  • SIMPLE HARMONIC MOTION

    RESONANCE ENGLISH|Exercise Board Level Exercise|24 Videos
  • SEMICONDUCTORS

    RESONANCE ENGLISH|Exercise Exercise 3|88 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PHYSICS|784 Videos

Similar Questions

Explore conceptually related problems

Find the displacement equation of the simple harmonic motion obtained by conbining the motions. x_(1)=2 "sin "omegat,x_(2)=4 "sin "(omegat+(pi)/(6)) and x_(3)=6 "sin" (omegat+(pi)/(3))

Find the displacement equation of the simple harmonic motion obtained by combining the motion. x_(1) = 2sin omega t , x_(2) = 4sin (omega t + (pi)/(6)) and x_(3) = 6sin (omega t + (pi)/(3))

The amplitude of given simple harmonic motion is y=(3sinomegat+4cosomegat)m

The resultant amplitude due to superposition of three simple harmonic motions x_(1) = 3sin omega t , x_(2) = 5sin (omega t + 37^(@)) and x_(3) = - 15cos omega t is

Two particles are executing identical simple harmonic motions described by the equations x_1=acos(omegat+(pi)/(6)) and x_2=acos(omegat+(pi)/(3)) . The minimum interval of time between the particles crossing the respective mean positions is (pi)/(2omega)

What is the phase difference between two simple harmonic motions represented by x_(1)=A"sin"(omegat+(pi)/(6)) and x_(2)=A "cos"omegat ?

A particle is subjected to two mutually perpendicular simple harmonic motions such that its X and y coordinates are given by X=2 sin omegat , y=2 sin (omega+(pi)/(4)) The path of the particle will be:

A partical is subjucted to two simple harmonic motions x_(1) = A_(1) sin omega t and x_(2) = A_(2) sin (omega t + pi//3) Find(a) the displacement at t = 0 , (b) the maximum speed of the partical and ( c) the maximum acceleration of the partical.

Two particle are executing simple harmonic motion. At an instant of time t their displacement are y_(1)=a "cos"(omegat) and y_(2)=a "sin" (omegat) Then the phase difference between y_(1) and y_(2) is

A particle is subjected to two mutually perpendicualr simple harmonic motions such that its x and y-coordinates are given by x=sinomegat , y=2cosomegat The path of the particle will be :