Home
Class 12
CHEMISTRY
Hydrogen atom: The electronic ground s...

Hydrogen atom:
The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as
`E_(n)=-(R_(H)Z^(2))/(n^(2))` where `R_(H)= "Rydberg constant," n= "principal quantum number"`
What is the principal quantum number, n' of the orbit of `Be^(3)` that has the same Bohr radius as that of ground state hydrogen atom ?

Text Solution

Verified by Experts

The correct Answer is:
`2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Hydrogen atom: The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as E_(n)=-(R_(H)Z^(2))/(n^(2)) where R_(H)= "Rydberg constant," n= "principal quantum number" The energy in Joule of an electron in the second orbit of H- atom is:

Hydrogen atom: The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as E_(n)=-(R_(H)Z^(2))/(n^(2)) where R_(H)= "Rydberg constant," n= "principal quantum number" Calculate the following : (a) the kinetic energy (in eV) of an electron in the ground state of hydrogen atom. (b) the potential energy (in eV) of an electron in the ground state of hydrogen atom.

Hydrogen atom: The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as E_(n)=-(R_(H)Z^(2))/(n^(2)) where R_(H)= "Rydberg constant," n= "principal quantum number" Calculate the wavelength of light (nm) for the electronic transition of H-atom from the first excited state to ground state. In the model of hydrogen like atom put forward by Niels Bohr (1913) the electron orbits around the central nucleus. the bohr radius of n^(th) orbit of a hydrogen-like species is given by r= k n^(2)/Z " " where, k is constant

Hydrogen atom: The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as E_(n)=-(R_(H)Z^(2))/(n^(2)) where R_(H)= "Rydberg constant," n= "principal quantum number" The ratio of energy of an electron in the ground state Be^(3-) ion to that of ground state H atom is: The kinetic and potential energies of an electron in the H atoms are given as K.E. =e^(2)/(4 pi epsilon_(0)2r) and P.E.=-1/(4pi epsilon_(0)) e^(2)/r

Hydrogen atom: The electronic ground state of hydrogen atom contains one electron in the first orbit. If sufficient energy is provided, this electron can be promoted to higher energy levels. The electronic energy of a hydrogen-like species (any atom//ions with nuclear charge Z and one electron) can be given as E_(n)=-(R_(H)Z^(2))/(n^(2)) where R_(H)= "Rydberg constant," n= "principal quantum number" The energy required to promote the ground state electron of H-atom to the first excited state is: When an electron returns from a higher energy level to a lower energy level, energy is given out in the form of UV//Visible radiation.

If the electron of a hydrogen atom is present in the first orbit. The total energy of the electrons is

The energy of the electron in the ground state of hydrogen atom is -13.6 eV . Find the kinetic energy of electron in this state.

The energy of the electron in the ground state of hydrogen atom is -13.6 eV . Find the kinetic energy and potential energy of electron in this state.

The energy of the electron in the ground state of hydrogen atom is -13.6 eV . Find the kinetic energy and potential energy of electron in this state.

The energy of the electron in the ground state of hydrogen atom is -13.6 eV . Find the kinetic energy and potential energy of electron in this state.