Home
Class 12
CHEMISTRY
Following reaction occurs at 25^(@) : ...

Following reaction occurs at `25^(@)` :
`2NO(g, 1xx10^(-5)atm) + CI_(2)(g, 1 xx 10^(-2)atm)hArr 2NOCI(g,1 xx 10^(-2)atm)`
Calculate `DeltaG^(@) [R = 8 J//"mole" K]`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard Gibbs free energy change (ΔG°) for the given reaction at 25°C, we will follow these steps: ### Step 1: Write the Reaction and Identify the Given Values The reaction is: \[ 2 \text{NO}(g, 1 \times 10^{-5} \text{ atm}) + \text{Cl}_2(g, 1 \times 10^{-2} \text{ atm}) \rightleftharpoons 2 \text{NOCl}(g, 1 \times 10^{-2} \text{ atm}) \] Given: - Pressure of NO = \( 1 \times 10^{-5} \) atm - Pressure of Cl₂ = \( 1 \times 10^{-2} \) atm - Pressure of NOCl = \( 1 \times 10^{-2} \) atm - Temperature (T) = 25°C = 298 K - Gas constant (R) = 8 J/(mol K) ### Step 2: Calculate the Equilibrium Constant (K) The equilibrium constant (K) for the reaction can be expressed in terms of the partial pressures: \[ K = \frac{(P_{\text{NOCl}})^2}{(P_{\text{NO}})^2 \cdot (P_{\text{Cl}_2})} \] Substituting the values: \[ K = \frac{(1 \times 10^{-2})^2}{(1 \times 10^{-5})^2 \cdot (1 \times 10^{-2})} \] \[ K = \frac{1 \times 10^{-4}}{1 \times 10^{-10} \cdot 1 \times 10^{-2}} = \frac{1 \times 10^{-4}}{1 \times 10^{-12}} = 1 \times 10^{8} \] ### Step 3: Use the Gibbs Free Energy Equation The relationship between ΔG° and K is given by: \[ \Delta G° = -2.303 R T \log K \] ### Step 4: Substitute the Values into the Equation Now substituting the values we have: \[ \Delta G° = -2.303 \times 8 \, \text{J/(mol K)} \times 298 \, \text{K} \times \log(1 \times 10^{8}) \] ### Step 5: Calculate the Logarithm Calculating the logarithm: \[ \log(1 \times 10^{8}) = 8 \] ### Step 6: Final Calculation Now substituting this back into the equation: \[ \Delta G° = -2.303 \times 8 \times 298 \times 8 \] Calculating: \[ \Delta G° = -2.303 \times 8 \times 298 \times 8 = -43.92 \, \text{kJ/mol} \] ### Final Answer Thus, the standard Gibbs free energy change (ΔG°) is: \[ \Delta G° = -43.92 \, \text{kJ/mol} \] ---

To calculate the standard Gibbs free energy change (ΔG°) for the given reaction at 25°C, we will follow these steps: ### Step 1: Write the Reaction and Identify the Given Values The reaction is: \[ 2 \text{NO}(g, 1 \times 10^{-5} \text{ atm}) + \text{Cl}_2(g, 1 \times 10^{-2} \text{ atm}) \rightleftharpoons 2 \text{NOCl}(g, 1 \times 10^{-2} \text{ atm}) \] Given: - Pressure of NO = \( 1 \times 10^{-5} \) atm ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-3 :(Only one option correct type) section A|8 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-3 :(Only one option correct type) section B|12 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-3 :(Subjective questions)Section B|8 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

Given equilibrium constants for the following reaction at 1200^(@)C C(g)+CO_(2)(g)hArr 2CO(g), K_(p_(1))=1.47xx10^(3) CO(g)+1//2Cl_(2)(g)hArr COCl(g), K_(P_(2))=2xx10^(6) Calculate K_(P) for the reaction : C(g)+CO_(2)+Cl_(2)(g)hArr 2COCl(g)

Calculate Delta_(r)S_("sys")^(@) for the following reaction at 373 K: CO(g) + H_(2)O(g) to CO_(2)(g) + H_(2)(g) Delta_(r)H^(@) = -4.1 xx 10^(4) J, Delta_(r)S^(@)("unv") = 56 J//K

The equilibrium constant of the following reactions at 400 K are given: 2H_(2)O(g) hArr 2H_(2)(g)+O_(2)(g), K_(1)=3.0xx10^(-13) 2CO_(2)(g) hArr 2CO(g)+O_(2)(g), K_(2)=2xx10^(-12) Then, the equilibrium constant K for the reaction H_(2)(g)+CO_(2)(g) hArr CO(g)+H_(2)O(g) is

For the equilibrium, PCI_(5)(g) hArr PCI_(3)(g) +CI_(2)(g) at 25^(@)C K_(c) =1.8 xx 10^(-7) Calculate DeltaG^(Theta) for the reaction (R = 8.314 J K^(-1) mol^(-1)) .

Identify the reaction order form each of the following rate constants: a. k = 7.06 xx 10^(-3) mol L^(-1) s^(-1) b. k = 5.6 xx 10^(-5) s^(-1) c. k = 1.25 xx 10^(-2) mol^(-1)l s^(-1) d. k = 1.25 xx 10^(-2) mol L^(2)s^(-1) e. k = 5.0 xx 10^(-6) atm^(-1)s^(-1)

What is the equilibrium constant K_(c) for the following reaction at 400K ? 2NOCI(g) hArr 2NO(g) +CI_(2)(g) DeltaH^(Theta) = 77.2 kJ mol^(-1) and DeltaS^(Theta) = 122 J K^(-1) mol^(-1) at 400K .

Calculate Delta_(r)G^(Theta) at 298K for the following reaction if the reaction mixtur econsists of 1atm of N_(2),3 atm of H_(2) , and 1atm of NH_(3) . N_(2)(g) +3H_(2)(g) W hArr 2NH_(3)(g), Delta_(r)G^(Theta) =- 33.32 kJ

Calculate the equilibrium constant (K) for the formation of NH^ in the following reaction: N_2(g) + 3H_2(g) At equilibrium, the concentration of NH_3 , H_2 and N_2 are 1.2 xx 10^(-2) ,3.0 xx 10^(-2) and 1.5 xx 10^(-2) M respectively.

Predict which of the following reactions will have appreciable concentration of rectants and products: a. Cl_(2)(g) hArr 2Cl(g), K_(c)=5xx10^(-39) b. Cl_(2)(g)+2NO(g) hArr 2NOCl(g), K_(c)=3.7xx10^(8) c. Cl_(2)(g)+2NO_(2)(g) hArr 2NO_(2)Cl(g), K_(c)=1.8

For the equilibrium H_(2) O (1) hArr H_(2) O (g) at 1 atm 298 K