Home
Class 12
CHEMISTRY
C(2)H(6)(g) + 3.5O(2)(g) rarr 2CO(2)(g) ...

`C_(2)H_(6)(g) + 3.5O_(2)(g) rarr 2CO_(2)(g) + 3H_(2)O(g)`
`DeltaS_("vap") (H_(2)O,l) = "x"_(1)calK^(-1)` (boiling point `=T_(1)`)
`DeltaH_(f)(H_(2)O,l) = "x"_(2)`
`DeltaH_(f)(CO_(2)) = "x"_(3)`
`DeltaH_(f)(C_(2)H_(6)) = "x"_(4)`
Hence , `DeltaH` for the reaction is-

A

`2"x"_(3) + 3"x"_(2)-"x"_(4)`

B

`2"x"_(3) + 3"x"_(2)-"x"_(4) + 3"x"_(1)T_(1)`

C

`2"x"_(3) + 3"x"_(2)-"x"_(4) - 3"x"_(1)T_(1)`

D

`"x"_(1)T_(1) + "X"_(2) + "X"_(3) - "x"_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the enthalpy change (ΔH) for the given combustion reaction of ethane (C₂H₆), we will use the standard enthalpy of formation (ΔH_f) values for the reactants and products involved in the reaction. The reaction is: \[ C_{2}H_{6}(g) + 3.5O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(g) \] ### Step-by-Step Solution: 1. **Identify the Enthalpy of Formation Values**: - ΔH_f (H₂O, l) = x₂ - ΔH_f (CO₂) = x₃ - ΔH_f (C₂H₆) = x₄ - ΔS_vap (H₂O, l) = x₁ (cal/K) at boiling point T₁ 2. **Write the Formula for ΔH of the Reaction**: The enthalpy change for the reaction can be calculated using the formula: \[ \Delta H = \sum \Delta H_f \text{(products)} - \sum \Delta H_f \text{(reactants)} \] 3. **Calculate the Enthalpy for Products**: - For the products: - 2 moles of CO₂ contribute: \( 2 \times x₃ \) - 3 moles of H₂O contribute: \( 3 \times x₂ \) - Therefore, the total enthalpy for products is: \[ \Delta H_{products} = 2x₃ + 3x₂ \] 4. **Calculate the Enthalpy for Reactants**: - For the reactants: - 1 mole of C₂H₆ contributes: \( x₄ \) - The enthalpy of O₂ is zero since it is in its standard state. - Therefore, the total enthalpy for reactants is: \[ \Delta H_{reactants} = x₄ \] 5. **Include the Enthalpy of Vaporization**: - Since water is produced as a gas, we need to account for the vaporization of water. The enthalpy change due to vaporization is given by: \[ 3 \times \Delta S_{vap} \times T_1 = 3x₁T₁ \] 6. **Combine the Results**: Now, substituting the values into the ΔH formula: \[ \Delta H = (2x₃ + 3x₂ + 3x₁T₁) - x₄ \] 7. **Final Expression for ΔH**: Thus, the final expression for ΔH of the reaction is: \[ \Delta H = 2x₃ + 3x₂ - x₄ + 3x₁T₁ \] ### Conclusion: The correct option that matches our derived expression is: \[ \Delta H = 2x₃ + 3x₂ - x₄ + 3x₁T₁ \] This corresponds to option B.

To find the enthalpy change (ΔH) for the given combustion reaction of ethane (C₂H₆), we will use the standard enthalpy of formation (ΔH_f) values for the reactants and products involved in the reaction. The reaction is: \[ C_{2}H_{6}(g) + 3.5O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(g) \] ### Step-by-Step Solution: 1. **Identify the Enthalpy of Formation Values**: - ΔH_f (H₂O, l) = x₂ ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-3 :(Only one option correct type) section C|11 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part:(III) : Match the column|3 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-3 :(Only one option correct type) section A|8 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

Given C_(2)H_(2)(g)+H_(2)(g)rarrC_(2)H_(4)(g): DeltaH^(@)=-175 " kJ mol"^(-1) DeltaH_(f(C_(2)H_(4),g))^(@)=50 " kJ mol"^(-1), DeltaH_(f(H_(2)O,l))^(@)=-280 " kJ mol"^(-1), DeltaH_(f(CO_(2)g))^(@)=-390 " kJ mol"^(-1) If DeltaH^(@) is enthalpy of combustion (in kJ "mol"^(-1) ) of C_(2)H_(2) (g), then calculate the value of |(DeltaH^(@))/(257)|

Compounds with carbon-carbon double bond, such as ethylene, C_(2)H_(4) , add hydrogen in a reaction called hydrogenation. C_(2)H_(4)(g)+H_(2)(g) rarr C_(2)H_(6)(g) Calculate enthalpy change for the reaction, using the following combustion data C_(2)H_(4)(g) + 3O_(2)(g) rarr 2CO_(2)(g) + 2H_(2)O(g) , Delta_("comb")H^(Θ) = -1401 kJ mol^(-1) C_(2)H_(6)(g) + 7//2O_(2)(g)rarr 2CO_(2) (g) + 3H_(2)O(l) , Delta_("comb")H^(Θ) = -1550kJ H_(2)(g) + 1//2O_(2)(g) rarr H_(2)O(l) , Delta_("comb")H^(Θ) = -286.0 kJ mol^(-1)

H_(2)(g)+(1)/(2)O_(2)(g)rarrH_(2)O(l), DeltaH =- 286 kJ 2H_(2)(g)+O_(2)(g)rarr2H_(2)O(l)……………kJ(+-?)

CH_(4)(g) +2O_(2)(g) rarr CO_(2)(g) +2H_(2)O(l), DeltaH =- 890 kJ what is the calorific or fuel value of 1kg of CH_(4) ?

NH_(3)(g) + 3Cl_(2)(g) rarr NCl_(3)(g) + 3HCl(g), " "DeltaH_(1) N_(2)(g) + 3H_(2)(g) rarr 2NH_(3)(g), " "Delta H_(2) H_(2)(g) + Cl_(2)(g) rarr 2HCl(g), " "Delta H_(3) The heat of formation of NCl3(g) in the terms of DeltaH_(1), DeltaH_2 and DeltaH_(3) is :

NH_(3)(g) + 3Cl_(2)(g) rarr NCl_(3)(g) + 3HCl(g), " "DeltaH_(1) N_(2)(g)+3H_(2)(g)rarr 2NH_(3)(g), " "DeltaH_(2) H_(2)(g)+ Cl_(2)(g) rarr 2HCl(g) , " " DeltaH_(3) The heat of formation of NCl_(3) in the terms of DeltaH_(1), DeltaH_(2) "and" DeltaH_(3) is

Calculate the resonance energy of toluene (use Kekule structure from the following data C_(7)H_(8)(l) +9O_(2)(g) rarr 7CO_(2)(g) +4H_(2)O(l)+ DeltaH, DeltaH^(Theta) =- 3910 kJ mol^(-1) C_(7)H_(8)(l) rarr C_(7)H_(8)(g), DeltaH^(Theta) = 38.1 kJ mol^(-1) Delta_(f)H^(Theta) (water) =- 285.8 kJ mol^(-1) Delta_(f)H^(Theta) [CO_(2)(g)] =- 393.5 kJ mol^(-1) Heat of atomisation of H_(2)(g) = 436.0 kJ mol^(-1) Heat of sublimation of C(g) = 715.0 kJ mol^(-1) Bond energies of C-H, C-C , and C=C are 413.0, 345.6 , and 610.0 kJ mol^(-1) .

The enthalpy of the reaction H_(2)(g)+(1)/(2)O_(2)(g)toH_(2)O(g) is DeltaH_(1) and that of H_(2)(g)+(1)/(2)O_(2)(g)toH_(2)O(l) is DeltaH_(2) . Then

C_(4)H_(10)+(13)/(2)O_(2)(g)rarr4CO_(2)(g)+5H_(2)O(l), DeltaH =- 2878 kJ DeltaH is the heat of……….of butane gas.

For the reaction C_(3)H_(8)(g)+5O_(2)(g)rarr3CO_(2)(g)+4H_(2)O(l) at constant temperature, DeltaH-DeltaU is