Home
Class 12
CHEMISTRY
If DeltaG = -177K cal for " "(...

If `DeltaG = -177`K cal for `" "(1)2Fe(s)+(3)/(2)O_(2)(g) rarr Fe_(2)O_(3)(s)`
and `DeltaG =- 19` K cal for `" "(2)4Fe_(2)O_(3)(s)+ Fe(s) rarr 3Fe_(3)O_(4)(s)`
What is the Gibbs free energy of formation fo `Fe_(3)O_(4)(s)`?

A

`+229.6` Kcal/mol

B

`-242.3` Kcal/mol

C

`-727` Kcal/mol

D

`-229.6` Kcal/mol

Text Solution

AI Generated Solution

The correct Answer is:
To find the Gibbs free energy of formation for \( \text{Fe}_3\text{O}_4(s) \), we will use the provided reactions and their corresponding Gibbs free energy changes. ### Step 1: Write down the given reactions and their Gibbs free energy changes. 1. \( 2 \text{Fe}(s) + \frac{3}{2} \text{O}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s) \) \( \Delta G_1 = -177 \, \text{kcal} \) 2. \( 4 \text{Fe}_2\text{O}_3(s) + \text{Fe}(s) \rightarrow 3 \text{Fe}_3\text{O}_4(s) \) \( \Delta G_2 = -19 \, \text{kcal} \) ### Step 2: Adjust the first reaction to match the stoichiometry needed for the second reaction. Since the second reaction involves \( \text{Fe}_2\text{O}_3 \) in a quantity of 4, we will multiply the first reaction by 2 to match the stoichiometry: \[ 4 \text{Fe}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{Fe}_2\text{O}_3(s) \] The Gibbs free energy change for this adjusted reaction will be: \[ \Delta G_1' = 2 \times (-177 \, \text{kcal}) = -354 \, \text{kcal} \] ### Step 3: Add the adjusted first reaction to the second reaction. Now, we add the adjusted first reaction to the second reaction: \[ 4 \text{Fe}(s) + 3 \text{O}_2(g) + 4 \text{Fe}_2\text{O}_3(s) + \text{Fe}(s) \rightarrow 2 \text{Fe}_2\text{O}_3(s) + 3 \text{Fe}_3\text{O}_4(s) \] When we combine these reactions, the \( 2 \text{Fe}_2\text{O}_3(s) \) cancels out: \[ 5 \text{Fe}(s) + 3 \text{O}_2(g) \rightarrow 3 \text{Fe}_3\text{O}_4(s) \] ### Step 4: Calculate the total Gibbs free energy change for the formation of \( \text{Fe}_3\text{O}_4 \). The total Gibbs free energy change for the formation of \( 3 \text{Fe}_3\text{O}_4(s) \) is: \[ \Delta G_{\text{total}} = \Delta G_1' + \Delta G_2 = -354 \, \text{kcal} + (-19 \, \text{kcal}) = -373 \, \text{kcal} \] ### Step 5: Calculate the Gibbs free energy of formation for 1 mole of \( \text{Fe}_3\text{O}_4 \). Since the total Gibbs free energy change calculated is for the formation of \( 3 \text{Fe}_3\text{O}_4(s) \), we need to divide by 3 to find the Gibbs free energy of formation for 1 mole: \[ \Delta G_f (\text{Fe}_3\text{O}_4) = \frac{-373 \, \text{kcal}}{3} = -124.33 \, \text{kcal} \] ### Final Answer The Gibbs free energy of formation for \( \text{Fe}_3\text{O}_4(s) \) is approximately \( -124.33 \, \text{kcal} \).

To find the Gibbs free energy of formation for \( \text{Fe}_3\text{O}_4(s) \), we will use the provided reactions and their corresponding Gibbs free energy changes. ### Step 1: Write down the given reactions and their Gibbs free energy changes. 1. \( 2 \text{Fe}(s) + \frac{3}{2} \text{O}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s) \) \( \Delta G_1 = -177 \, \text{kcal} \) 2. \( 4 \text{Fe}_2\text{O}_3(s) + \text{Fe}(s) \rightarrow 3 \text{Fe}_3\text{O}_4(s) \) ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part:(III) : Match the column|3 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(I) :Only one option correct|17 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-3 :(Only one option correct type) section B|12 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

Fe_(3)O_(4) is:

4Fe+3O_(2) rarr 2Fe_(2)O_(3) (reference to iron )

What is the oxidation number of Fe in K_(3)[Fe(C_(2)O_(4))_(3)] ?

What is the oxidation number of Fe in K_(3)[Fe(C_(2)O_(4))_(3)] ?

Na_(2)CO_(3)+Fe_(2)O_(3)rarr A+CO_(2) , what is A in the reaction ?

Na_(2)CO_(3)+Fe_(2)O_(3)rarr A+CO_(2) , what is A in the reaction ?

Given: i. 2Fe(s) +(3)/(2)O_(2)(g) rarr Fe_(2)O_(3)(s), DeltaH^(Theta) =- 193.4 kJ ii. Mg(s) +(1)/(2)O_(2)(g) rarr MgO(s), DeltaH^(Theta) =- 140.2kJ What is DeltaH^(Theta) of the reaction? 3Mg +Fe_(2)O_(3)rarr 3MgO +2Fe

Fe(s)+H_(2)O(l) overset(Boil) to Fe_(3)O_(4)+H_(2)uarr

Fe(s)+H_(2)O(l) overset(Boil) to Fe_(3)O_(4)+H_(2)uarr

Find the oxidation number of Fe in Fe_(3)O_(4)