Home
Class 12
CHEMISTRY
For the formation of C(g) "at" 300 K. ...

For the formation of `C(g) "at" 300` K.
`A(g) + 3B(g) rarr 2C(g)`
Calculate the magnitude of `DeltaG^(@)` (Kcal) if given data:
`{:(,A,B,C),(DeltaH_(f)^(@)("Kcal mol"^(-1)),0,0,-10),(DeltaS_(f)^(@) ("Cal K"^(-1) "mol"^(-1)), 40,30,45):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the standard Gibbs free energy change (ΔG°) for the reaction: \[ A(g) + 3B(g) \rightarrow 2C(g) \] Given data: - Enthalpy of formation (ΔH_f°) in Kcal/mol: - A: 0 - B: 0 - C: -10 - Entropy of formation (ΔS_f°) in Cal/K·mol: - A: 40 - B: 30 - C: 45 ### Step 1: Calculate ΔH° of the reaction The enthalpy change for the reaction (ΔH°) can be calculated using the formula: \[ \Delta H^\circ_{\text{reaction}} = \sum \Delta H^\circ_f \text{(products)} - \sum \Delta H^\circ_f \text{(reactants)} \] Substituting the values: \[ \Delta H^\circ_{\text{reaction}} = [2 \times (-10)] - [1 \times 0 + 3 \times 0] \] Calculating this gives: \[ \Delta H^\circ_{\text{reaction}} = -20 \text{ Kcal} \] ### Step 2: Calculate ΔS° of the reaction The entropy change for the reaction (ΔS°) can be calculated using the formula: \[ \Delta S^\circ_{\text{reaction}} = \sum \Delta S^\circ_f \text{(products)} - \sum \Delta S^\circ_f \text{(reactants)} \] Substituting the values: \[ \Delta S^\circ_{\text{reaction}} = [2 \times 45] - [1 \times 40 + 3 \times 30] \] Calculating this gives: \[ \Delta S^\circ_{\text{reaction}} = 90 - (40 + 90) = 90 - 130 = -40 \text{ Cal/K·mol} \] ### Step 3: Convert ΔS° to Kcal Since ΔS° is in Cal/K·mol, we need to convert it to Kcal: \[ \Delta S^\circ_{\text{reaction}} = -40 \text{ Cal/K·mol} = -0.04 \text{ Kcal/K·mol} \] ### Step 4: Calculate ΔG° using the Gibbs free energy equation The Gibbs free energy change (ΔG°) can be calculated using the formula: \[ \Delta G^\circ_{\text{reaction}} = \Delta H^\circ_{\text{reaction}} - T \Delta S^\circ_{\text{reaction}} \] Where \( T = 300 \text{ K} \). Substituting the values we have: \[ \Delta G^\circ_{\text{reaction}} = -20 \text{ Kcal} - (300 \text{ K}) \times (-0.04 \text{ Kcal/K·mol}) \] Calculating this gives: \[ \Delta G^\circ_{\text{reaction}} = -20 + 12 = -8 \text{ Kcal} \] ### Final Answer The magnitude of ΔG° is: \[ \Delta G^\circ = -8 \text{ Kcal} \]
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(III): One or more than one options correct|8 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(IV): comprehension|8 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(I) :Only one option correct|17 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

For the synthesis of ammonia at 300 K : N_2(g)+3H_2(g)to2NH_3(g) Calculate the value of DeltaG^@ in Kcal and give your answer in magnitude by using the following data : {:(( ),N_2,H_2,NH_3),(DeltaH_f(Kcal//"mole"),0,0,-10),(S^@(Cal//"K-mole"),40,30,45):}

Calculate the standard free energy change for the formation of methane at 300K : C("graphite") +2H_(2) (g) rarr CH_(4)(g) The following data are given: Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81 Delta_(f)S^(Theta)(JK^(-1) mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7 CH_(4)(g) = 186.3

Calculate the standard free energy change for the formation of methane at 300K : C("graphite") +2H_(2) (g) rarr CH_(4)(g) The following data are given: Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81 Delta_(f)S^(Theta)(JK^-1 mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7, CH_(4)(g) = 186.3

For the reaction at 298 K A(g) + B(g) hArr C(g) + D(g) If DeltaH^(@) =29.8 Kcal and DeltaS^(@)=0.1 Kcal K^(-1) then calculate reaction constant (k)

For the reaction 2A (g) + B(g) to C (g) Delta U^(@) = 20 kcal/mole, Delta S^(@) = 100 cal/kmole at 300 K. Hence Delta G^(@) in kcal is __________ [R = 2 cal mol^(-1) K^(-1)]

Select correct statement(s) for the reaction H_(2)O(g)+CO(g)rarrH_(2)(g)+CO_(2)(g) substance CO(g)" "CO_(2)(g)" "H_(2)O(g)" "H_(2)(g) Delta_(f)H_(400)^(@)("kcal mol"^(-1))" -25 -95 -55 0" S_(400)^(@)("cal mol"^(-1)"K"^(-1)) " 45 50 40 30"

For the reaction, A(g)+B(s)hArrC(g)+D(g).K_(c)=49 mol L^(-1)at 127^(@)C. Calculate k_(p).

For the reaction, A(g)+B(s)hArrC(g)+D(g).K_(c)=49 mol L^(-1)at 127^(@)C. Calculate k_(p).

Calculate (a) DeltaG^(Θ) and (b) the equilibrium constant for the formation of NO and O_(2) at 298 K NO(g)+1//2 O_(2)(g) hArr NO_(2)(g) where Delta_(f)G^(Θ)(NO_(2))=52.0 kJ mol^(-1) Delta_(f)G^(Θ)(NO)=87.0 kJ mol^(-1) Delta_(f)G^(Θ)(O_(2))=0 kJ mol^(-1)

For the reaction at 298K: A_((g)) +B_((g)) hArr C_((g)) + D_((g)) Delta H^(@) + 29.8kcal and Delta S^(@) = 100cal K^(-1) . Find the value of equilibrium constant.