Home
Class 12
CHEMISTRY
Calculate the magnitude of standard entr...

Calculate the magnitude of standard entropy change for reaction `X hArr Y` if `DeltaH^(@) = 25 KJ` and `K_("eq") "is" 10^(-7)` at `300` K.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the magnitude of the standard entropy change (ΔS°) for the reaction \( X \rightleftharpoons Y \), we will follow these steps: ### Step 1: Write down the relevant equations We will use the following equations: 1. \( \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \) 2. \( \Delta G^\circ = -2.303 R T \log K_{eq} \) Where: - \( \Delta G^\circ \) = standard Gibbs free energy change - \( \Delta H^\circ \) = standard enthalpy change - \( T \) = temperature in Kelvin - \( \Delta S^\circ \) = standard entropy change - \( R \) = universal gas constant (8.314 J/mol·K) - \( K_{eq} \) = equilibrium constant ### Step 2: Substitute known values into the equations Given: - \( \Delta H^\circ = 25 \, \text{kJ} = 25000 \, \text{J} \) (since we need to convert kJ to J) - \( K_{eq} = 10^{-7} \) - \( T = 300 \, \text{K} \) From the second equation: \[ \Delta G^\circ = -2.303 \cdot R \cdot T \cdot \log K_{eq} \] Substituting the values: \[ \Delta G^\circ = -2.303 \cdot 8.314 \cdot 300 \cdot \log(10^{-7}) \] ### Step 3: Calculate \( \log(10^{-7}) \) \[ \log(10^{-7}) = -7 \] Now substitute this back into the equation: \[ \Delta G^\circ = -2.303 \cdot 8.314 \cdot 300 \cdot (-7) \] ### Step 4: Calculate \( \Delta G^\circ \) Calculating: \[ \Delta G^\circ = 2.303 \cdot 8.314 \cdot 300 \cdot 7 \] Calculating the constants: \[ = 2.303 \cdot 8.314 \cdot 300 \cdot 7 \approx 2.303 \cdot 8.314 \cdot 2100 \approx 2.303 \cdot 17460.6 \approx 40132.5 \, \text{J} \approx 40.13 \, \text{kJ} \] ### Step 5: Substitute \( \Delta G^\circ \) back into the first equation Now we have: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] Substituting known values: \[ 40.13 \, \text{kJ} = 25 \, \text{kJ} - 300 \Delta S^\circ \] Convert \( 40.13 \, \text{kJ} \) to J: \[ 40130 \, \text{J} = 25000 \, \text{J} - 300 \Delta S^\circ \] ### Step 6: Solve for \( \Delta S^\circ \) Rearranging gives: \[ 300 \Delta S^\circ = 25000 - 40130 \] \[ 300 \Delta S^\circ = -15130 \] \[ \Delta S^\circ = \frac{-15130}{300} \approx -50.43 \, \text{J/K} \] ### Step 7: Calculate the magnitude of \( \Delta S^\circ \) The magnitude of the standard entropy change is: \[ |\Delta S^\circ| = 50.43 \, \text{J/K} \] ### Final Answer The magnitude of the standard entropy change for the reaction \( X \rightleftharpoons Y \) is approximately **50.43 J/K**.

To calculate the magnitude of the standard entropy change (ΔS°) for the reaction \( X \rightleftharpoons Y \), we will follow these steps: ### Step 1: Write down the relevant equations We will use the following equations: 1. \( \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \) 2. \( \Delta G^\circ = -2.303 R T \log K_{eq} \) Where: ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(III): One or more than one options correct|8 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(IV): comprehension|8 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part:(I) :Only one option correct|17 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard entropy change for the reaction X hArr Y if the value of DeltaH^@ = 28.40 kJ and equilibirum constant is 1.8 xx 10^(-7) at 298 K.

Calculate the entropy change for a reaction: XrarrY Given that DeltaH^(Theta) = 28.40 kJ mol^(-1) and equilibrium constant is 1.8 xx 10^(-7) at 298K .

Calculate the entropy change at 298K for the reaction Br_(2)(l) +CI_(2)(g) rarr 2BrCI(g) DeltaH = 29.3 kJ at 298K . The entropies of Br_(2)(l), CI_(2)(g) , and BrCI(g) at the above temperature and 152.3, 223.0 and 239.7 J mol^(-1)K^(-1) respectively.

Standard enthalpy and standard entropy change for the oxidation of NH_(3) at 298K are -382.64KJ mol^(-1) and 145.6Jmol^(-1) respectively. Standard free energy change for the same reaction at 298K is

Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are -582.64 kJ mol^(-1) and -150.6 J mol^(-1) k^-1 , respectively. Standard Gibb's energy change for the same reaction at 298 K is

(i) Calculate the change in entropy for the fusion of 1 mole of ice. The melting point of ice is 273 K and molar enthalpy of fusion for ice = 6.0 kJ/mole. (ii) Calculate the standard of entropy change for the following reaction. {:(,H^(+)(aq), + OH(aq)to, H_(2)O(l)),(S^(@)(298 K)//JK^(-1)mol^(-1),0,-10.7,+70):}

Calculate the entropy change for vaporization of water if latent heat of vaporization for water is 2.26 kJ/gram. The K_(b) for H_(2)O is 0.51 K/molality

Calculate the free energy change at 298 K for the reaction, Br_(2)(l)+ Cl_(2)(g) rarr 2BrCl(g) . For the reaction DeltaH^(@)=29.3 KJ & the entropies of Br_(2)(l),Cl_(2)(g) & BrCl(g) at the 298 K are 152.3,223.0,239.7 J "mol^(-1)K^(-1) respectively.

What will be the melting point of KCl if enthalpy change for the reaction is "7.25 J mol"^(-1) and entropy change is "0.007 J K"^(-1)"mol"^(-1) ?

For the reaction, 2NOCl(g) hArr 2NO(g)+Cl_(2)(g) Calculate the standard equilibrium constant at 298 K . Given that the value of DeltaH^(ɵ) and DeltaS^(ɵ) of the reaction at 298 K are 77.2 kJ mol^(-1) and 122 J K^(-1) mol^(-1) .