Home
Class 11
CHEMISTRY
The value of 1og(10) K for a reaction Ah...

The value of `1og_(10)` K for a reaction `AhArrB` is:
(Given, `Delta_(r)H_(298K)^(@)=-54.07kJ" "mol^(-1),Delta_(r)S_(298K)^(@)=10JK^(-1)" "mol^(-1)` and
R=8.314JK^(-1)` "mol^(-1),2.303xx8.314xx298=5705`)

A

`5`

B

`10`

C

`95`

D

`100`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{10} K \) for the reaction \( A \rightleftharpoons B \). We will use the provided thermodynamic data and the relationship between Gibbs free energy, enthalpy, and entropy. ### Step-by-Step Solution: 1. **Write the Gibbs Free Energy Equation**: The Gibbs free energy change at standard conditions is given by: \[ \Delta G = \Delta G^\circ - T \Delta S^\circ \] 2. **Convert Given Values**: - Given \( \Delta_r H_{298K}^\circ = -54.07 \, \text{kJ/mol} \). Convert this to joules: \[ \Delta_r H_{298K}^\circ = -54.07 \times 10^3 \, \text{J/mol} = -54070 \, \text{J/mol} \] - Given \( \Delta_r S_{298K}^\circ = 10 \, \text{J/(K mol)} \). - Given \( T = 298 \, \text{K} \). 3. **Calculate \( \Delta G \)**: Substitute the values into the Gibbs free energy equation: \[ \Delta G = -54070 \, \text{J/mol} - (298 \, \text{K} \times 10 \, \text{J/(K mol)}) \] \[ \Delta G = -54070 \, \text{J/mol} - 2980 \, \text{J/mol} = -57050 \, \text{J/mol} \] 4. **Use the Relationship Between \( \Delta G \) and \( K \)**: We know that: \[ \Delta G^\circ = -2.303 R T \log_{10} K \] Rearranging gives: \[ \log_{10} K = -\frac{\Delta G^\circ}{2.303 R T} \] 5. **Substitute Values**: Substitute \( \Delta G^\circ = -57050 \, \text{J/mol} \), \( R = 8.314 \, \text{J/(K mol)} \), and \( T = 298 \, \text{K} \): \[ \log_{10} K = -\frac{-57050}{2.303 \times 8.314 \times 298} \] We know from the problem statement that: \[ 2.303 \times 8.314 \times 298 = 5705 \] Therefore: \[ \log_{10} K = \frac{57050}{5705} = 10 \] 6. **Final Answer**: Thus, the value of \( \log_{10} K \) for the reaction \( A \rightleftharpoons B \) is: \[ \log_{10} K = 10 \]

To solve the problem, we need to find the value of \( \log_{10} K \) for the reaction \( A \rightleftharpoons B \). We will use the provided thermodynamic data and the relationship between Gibbs free energy, enthalpy, and entropy. ### Step-by-Step Solution: 1. **Write the Gibbs Free Energy Equation**: The Gibbs free energy change at standard conditions is given by: \[ \Delta G = \Delta G^\circ - T \Delta S^\circ ...
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    RESONANCE ENGLISH|Exercise Exercise-3 (Part-2)|17 Videos
  • CHEMICAL EQUILIBRIUM

    RESONANCE ENGLISH|Exercise Advanced Level Problems (Part-1)|31 Videos
  • CHEMICAL EQUILIBRIUM

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-4)|6 Videos
  • CHEMICAL BONDING

    RESONANCE ENGLISH|Exercise ORGANIC CHEMISTRY(Fundamental Concept )|6 Videos
  • D & F-BLOCK ELEMENTS & THEIR IMPORTANT COMPOUNDS

    RESONANCE ENGLISH|Exercise Match the column|1 Videos

Similar Questions

Explore conceptually related problems

The value of log_(10)K for a reaction A hArr B is (Given: Delta_(f)H_(298K)^(Theta) =- 54.07 kJ mol^(-1) , Delta_(r)S_(298K)^(Theta) =10 JK^(=1) mol^(-1) , and R = 8.314 J K^(-1) mol^(-1)

The value of log_(10)K for the reaction : A harr B , If Delta H^(@) = - 55.07 kj "mole"^(-1) at 298K. Delta S^(@) = 10 jK^(-1) "mole"^(-1) at 298 K , R = 8.314 jK^(-1) "mole"^(-1)

For a reversible reaction A hArr B . Find (log_(10)K)/(10) at 2727^(@) C temperature Given Delta_(r)H^(0) = - 54.07 kJ mol^(-1) Delta_(r)S^(0) = 10 JK^(-1) R = 8.314 JK^(-1) mol^(-1)

Calculate the value of equilibrium constant, K for the following reaction at 400 K. 2NOCl(g) hArr 2NO (g) + Cl_2(g) DeltaH^@ = 80.0 kJ mol^(-1), DeltaS^@ = 120 KJ^(-1) mol^(-1) at 400 K, R = 8.31 JK^(-1) mol^(-1) .

For the reaction at 300 K A(g)hArrV(g)+S(g) Delta_(r)H^(@)=-30kJ//mol, Delta_(r)S^(@)=-0.1kJK^(-1).mol^(-1) What is the value of equilibrium constant ?

The standard free energy change of a reaction is DeltaG^(@)=-115kJ//mol^(-1) at 298 K. Calculate the value of log_(10)K_(p) (R=8.314JK^(-1)mol^(-1))

Calcualate Delta_(f)G^(@) "for" (NH_(4)Cl,s) at 310 K. Given : Delta_(f)H^(@)(NH_(4)Cl,s)=-314.5 KJ//"mol," "Delta_(r)C_(p)=0 S_(N_(2)(g))^(@)=192 JK^(-1), " "S_(H_(2)(g))^(@)=130.5 JK^(-1)mol^(-1), S_(Cl_(2))^(@)(g) =233 JK^(-1)"mol"^(-1)," "S^(@)NH_(4)Cl(s)=99.5 JK_(1)"mol"^(-1) All given data are at 300K.

Calculate Delta_(r)G^(@) for (NH_(4)Cl,s) at 310K. Given : Delta_(r)H^(@)(NH_(4)Cl,s) =-314 kj/mol, Delta_(r)C_(p)=0 S_(N_(2)(g))^(@)=192 JK^(-1mol^(-1)),S_(H_(2)(g))^(@)=130.5JK^(-1)mol^(-1), S_(Cl_(2)(g))^(@)=233JK mol^(-1), S_(NH_(4)Cl(s))^(@)=99.5JK^(-1)mol^(-1) All given data at 300K

For the reaction: CO(g) +H_(2)O(g) hArr CO_(2)(g) +H_(2)(g) (Delta_(r)H)_(300K) = - 41.2 kJ mol^(-1) (Delta_(r)H)_(1200K) =- 33.0 kJ mol^(-1) (Delta_(r)S)_(300K) = - 4.2 xx 10^(-2) kJ mol^(-1) (Delta_(r)S)_(1200K) =- 3.0 xx10^(-2) kJ mol^(-1) Predict the direction of spontaneity of the reaction at 300K and 1200K . also calculated log_(10)K_(p) at 300K and 1200K .

Calculate the entropy change for a reaction: XrarrY Given that DeltaH^(Theta) = 28.40 kJ mol^(-1) and equilibrium constant is 1.8 xx 10^(-7) at 298K .