Home
Class 12
MATHS
Find the intervals of monotonicity of t...

Find the intervals of monotonicity of the following functions.
`(i) f(x) =-x^(3) +6x^(2)-gx-2`
`(ii) f(x) =x+(1)/(x+1)`
(iii) `f(x) =x. e^(x-x^(2))`
(iv) `f(x) =x- cosx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the intervals of monotonicity for the given functions, we need to follow these steps: 1. **Differentiate the function** to find \( f'(x) \). 2. **Set the derivative equal to zero** to find critical points. 3. **Determine the sign of the derivative** in the intervals defined by the critical points to identify where the function is increasing or decreasing. Let's solve each part step by step. ### (i) \( f(x) = -x^3 + 6x^2 - 4x - 2 \) **Step 1: Differentiate the function.** \[ f'(x) = -3x^2 + 12x - 4 \] **Step 2: Set the derivative equal to zero.** \[ -3x^2 + 12x - 4 = 0 \] Dividing by -1: \[ 3x^2 - 12x + 4 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 3 \cdot 4}}{2 \cdot 3} \] \[ = \frac{12 \pm \sqrt{144 - 48}}{6} = \frac{12 \pm \sqrt{96}}{6} = \frac{12 \pm 4\sqrt{6}}{6} = 2 \pm \frac{2\sqrt{6}}{3} \] **Step 3: Determine the sign of \( f'(x) \).** The critical points are \( x = 2 - \frac{2\sqrt{6}}{3} \) and \( x = 2 + \frac{2\sqrt{6}}{3} \). We will test intervals around these points to determine where the function is increasing or decreasing. - For \( x < 2 - \frac{2\sqrt{6}}{3} \), choose \( x = 0 \): \[ f'(0) = -4 < 0 \quad \text{(decreasing)} \] - For \( 2 - \frac{2\sqrt{6}}{3} < x < 2 + \frac{2\sqrt{6}}{3} \), choose \( x = 2 \): \[ f'(2) = -3(2)^2 + 12(2) - 4 = 0 \quad \text{(check around)} \] - For \( x > 2 + \frac{2\sqrt{6}}{3} \), choose \( x = 3 \): \[ f'(3) = -3(3)^2 + 12(3) - 4 = 2 > 0 \quad \text{(increasing)} \] Thus, the function is: - Decreasing on \( (-\infty, 2 - \frac{2\sqrt{6}}{3}) \) - Increasing on \( (2 + \frac{2\sqrt{6}}{3}, \infty) \) ### (ii) \( f(x) = x + \frac{1}{x+1} \) **Step 1: Differentiate the function.** \[ f'(x) = 1 - \frac{1}{(x+1)^2} \] **Step 2: Set the derivative equal to zero.** \[ 1 - \frac{1}{(x+1)^2} = 0 \implies (x+1)^2 = 1 \implies x + 1 = \pm 1 \] Thus, \( x = 0 \) or \( x = -2 \). **Step 3: Determine the sign of \( f'(x) \).** - For \( x < -2 \), choose \( x = -3 \): \[ f'(-3) = 1 - \frac{1}{(-2)^2} = 1 - \frac{1}{4} = \frac{3}{4} > 0 \quad \text{(increasing)} \] - For \( -2 < x < 0 \), choose \( x = -1 \): \[ f'(-1) = 1 - 1 = 0 \quad \text{(check)} \] - For \( x > 0 \), choose \( x = 1 \): \[ f'(1) = 1 - \frac{1}{(2)^2} = 1 - \frac{1}{4} = \frac{3}{4} > 0 \quad \text{(increasing)} \] Thus, the function is: - Increasing on \( (-\infty, -2) \) and \( (0, \infty) \) - Decreasing on \( (-2, 0) \) ### (iii) \( f(x) = x e^{x - x^2} \) **Step 1: Differentiate the function using the product rule.** \[ f'(x) = e^{x-x^2} + x e^{x-x^2} (1 - 2x) \] Factoring out \( e^{x-x^2} \): \[ f'(x) = e^{x-x^2} (1 + x(1 - 2x)) \] **Step 2: Set the derivative equal to zero.** \[ 1 + x(1 - 2x) = 0 \implies 1 + x - 2x^2 = 0 \implies 2x^2 - x - 1 = 0 \] Using the quadratic formula: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} \] Thus, \( x = 1 \) or \( x = -\frac{1}{2} \). **Step 3: Determine the sign of \( f'(x) \).** - For \( x < -\frac{1}{2} \), choose \( x = -1 \): \[ f'(-1) = e^{-1} (1 - 2(-1)^2) = e^{-1} (1 - 2) < 0 \quad \text{(decreasing)} \] - For \( -\frac{1}{2} < x < 1 \), choose \( x = 0 \): \[ f'(0) = e^0 (1 + 0) > 0 \quad \text{(increasing)} \] - For \( x > 1 \), choose \( x = 2 \): \[ f'(2) = e^{2-4} (1 + 2(1 - 4)) < 0 \quad \text{(decreasing)} \] Thus, the function is: - Decreasing on \( (-\infty, -\frac{1}{2}) \) and \( (1, \infty) \) - Increasing on \( (-\frac{1}{2}, 1) \) ### (iv) \( f(x) = x - \cos x \) **Step 1: Differentiate the function.** \[ f'(x) = 1 + \sin x \] **Step 2: Set the derivative equal to zero.** \[ 1 + \sin x = 0 \implies \sin x = -1 \] This occurs at \( x = \frac{3\pi}{2} + 2k\pi \) for \( k \in \mathbb{Z} \). **Step 3: Determine the sign of \( f'(x) \).** Since \( \sin x \) oscillates between -1 and 1, \( f'(x) \) will always be greater than 0 except at the points where \( \sin x = -1 \). Thus, \( f'(x) \) is positive everywhere except at those specific points. Thus, the function is: - Increasing on \( (-\infty, \frac{3\pi}{2}) \) and \( (\frac{3\pi}{2}, \infty) \) ### Summary of Intervals of Monotonicity: 1. \( f(x) = -x^3 + 6x^2 - 4x - 2 \) - Decreasing: \( (-\infty, 2 - \frac{2\sqrt{6}}{3}) \) - Increasing: \( (2 + \frac{2\sqrt{6}}{3}, \infty) \) 2. \( f(x) = x + \frac{1}{x+1} \) - Increasing: \( (-\infty, -2) \) and \( (0, \infty) \) - Decreasing: \( (-2, 0) \) 3. \( f(x) = x e^{x - x^2} \) - Decreasing: \( (-\infty, -\frac{1}{2}) \) and \( (1, \infty) \) - Increasing: \( (-\frac{1}{2}, 1) \) 4. \( f(x) = x - \cos x \) - Increasing: \( (-\infty, \infty) \) except at \( x = \frac{3\pi}{2} + 2k\pi \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1A|5 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1B|6 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise High Level Problems (HLP)|35 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

Separate the intervals of concavity of the following functions (i) f(x)= sin^(-1)x ,(ii) f(x)=x+sinx

Find the points of discontinuity of the following fiunctions over R. (i) f(x) =(1)/(2 sin x-1)(ii)f(x) =(1)/(x^(2)-3|x|+2) (iii) f(x) =(1)/(x^(4)+x^(2)+1)

The interval of monotonicity of the function f(x)=(x)/(log_(e)x), is

Separate the intervals of monotonocity for the following function: (a) f(x) =-2x^(3)-9x^(2)-12x+1 (b) f(x)=x^(2)e^(-x) (c ) f(x) =sinx+cosx,x in (0,2pi) (d) f(x) =3cos^(4)x+cosx,x in (0,2 pi) (e ) f(x)=(log_(e)x)^(2)+(log_(e)x)

Find the interval of the monotonicity of the function f(x)= log_(e)((log_(e)x)/(x))

Find the points of local maxima and minima of following functions (i) f(x) =(x-1)(x-2)^(2) " "(ii) f(x) =-(x-1)^(3) (x+1)^(2) (iii) f(x) =xe^x

Find the points of local maxima or minima of following functions (i) f(x) = (x-1)^(3) (x+2)^(2) (ii) f(x) =x^(3) +x^(2) +x+1.

Find the domain and range of the following functions. (i) f(x)=sqrt(2x-3) " (ii) " f(x) =(1)/(x-2) (iii) f(x) =x^(2) +3 " (iv) " f(x)=(1)/(x^(2)+2)

Find the inverse of the following function. (i) f(x) = sin^(-1)(x/3), x in [-3,3] (ii) f(x) = 5^(log_e x), x gt 0 (iii) f(x) = log_e (x+sqrt(x^2+1))

Find the domain of the following functions (a) f(x)=(1)/(sqrt(x-2)) " (b) " f(x)=(1)/(x^(3)-x) (c ) f(x)= root(3)(x^(2)-2)

RESONANCE ENGLISH-APPLICATION OF DERIVATIVES-Self Practice Problems
  1. Water is dripping out of a conical funnel of semi-vertical angle 45^@ ...

    Text Solution

    |

  2. A hot air balloon rising straight up from a level field is tracked by ...

    Text Solution

    |

  3. Find the intervals of monotonicity of the following functions. (i...

    Text Solution

    |

  4. Let f(x) =x - tan^(-1)x. Prove that f(x) is monotonically increasing ...

    Text Solution

    |

  5. Find the range of values of a if f(x)=2e^x-a e^(-x)+(2a+1)x-3 is monot...

    Text Solution

    |

  6. Let f(x) =e^(2x) -ae^(x)+1.Prove that f(x) cannot be monotonically d...

    Text Solution

    |

  7. Find the values of a for which the function f(x)=(a+2)x^3-3a x^2+9a x-...

    Text Solution

    |

  8. For each of the following graph comment on monotonically of f(x) ...

    Text Solution

    |

  9. Let f(x)=x^3-3x^2+ 3x + 4, comment on the monotonic behaviour of f(x) ...

    Text Solution

    |

  10. Draw the graph of function f(x)={underset([x] " "1 le x le 2)(x " ...

    Text Solution

    |

  11. In each of following graphs identify if x= a is point of local maxi...

    Text Solution

    |

  12. Examine the graph of following functions in each case identify the p...

    Text Solution

    |

  13. Find the points of local maxima or minima of following functions...

    Text Solution

    |

  14. Let f(x) =x^(3) -x^(2) -x-4 (i) find the possible points of maxim...

    Text Solution

    |

  15. Let f(x) =x +(1)/(x). find local maximum and local minimum value ...

    Text Solution

    |

  16. if f(x) ={underset( cos x " "x ge 0)((x+lambda)^(2) " " x lt 0). ...

    Text Solution

    |

  17. Let f(x) = sin x (1+cos x) , x in (0,2pi). Find the number of criti...

    Text Solution

    |

  18. Find the two positive numbers x and y whose sum is 35 and the ...

    Text Solution

    |

  19. A square piece of tin of side 18 cm is to be made into a box withou...

    Text Solution

    |

  20. A square piece of tin of side 18 cm is to be made into a box w...

    Text Solution

    |