Home
Class 12
MATHS
Find the intervals of monotonicity for t...

Find the intervals of monotonicity for the following fucntions.
`(i) (x^(4))/(4)+(x^(3))/(3)-3x^(2)+5 " "(ii) log_(3)^(2) x+ log_(3)x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the intervals of monotonicity for the given functions, we will follow these steps: ### Part (i): \( f(x) = \frac{x^4}{4} + \frac{x^3}{3} - 3x^2 + 5 \) 1. **Differentiate the function**: \[ f'(x) = \frac{d}{dx}\left(\frac{x^4}{4}\right) + \frac{d}{dx}\left(\frac{x^3}{3}\right) - \frac{d}{dx}(3x^2) + \frac{d}{dx}(5) \] \[ f'(x) = x^3 + x^2 - 6x \] 2. **Set the derivative equal to zero**: \[ f'(x) = x^3 + x^2 - 6x = 0 \] Factor out \( x \): \[ x(x^2 + x - 6) = 0 \] 3. **Factor the quadratic**: \[ x^2 + x - 6 = (x - 2)(x + 3) \] Thus, we have: \[ f'(x) = x(x - 2)(x + 3) = 0 \] 4. **Find the critical points**: The critical points are: \[ x = 0, \quad x = 2, \quad x = -3 \] 5. **Determine the intervals**: The critical points divide the number line into intervals: - \( (-\infty, -3) \) - \( (-3, 0) \) - \( (0, 2) \) - \( (2, \infty) \) 6. **Test each interval**: - For \( x < -3 \) (e.g., \( x = -4 \)): \[ f'(-4) = (-4)((-4) - 2)((-4) + 3) = -4 \cdot -6 \cdot -1 = -24 \quad (\text{decreasing}) \] - For \( -3 < x < 0 \) (e.g., \( x = -1 \)): \[ f'(-1) = (-1)((-1) - 2)((-1) + 3) = -1 \cdot -3 \cdot 2 = 6 \quad (\text{increasing}) \] - For \( 0 < x < 2 \) (e.g., \( x = 1 \)): \[ f'(1) = (1)(1 - 2)(1 + 3) = 1 \cdot -1 \cdot 4 = -4 \quad (\text{decreasing}) \] - For \( x > 2 \) (e.g., \( x = 3 \)): \[ f'(3) = (3)(3 - 2)(3 + 3) = 3 \cdot 1 \cdot 6 = 18 \quad (\text{increasing}) \] 7. **Conclusion**: - Increasing on \( (-3, 0) \) and \( (2, \infty) \) - Decreasing on \( (-\infty, -3) \) and \( (0, 2) \) ### Part (ii): \( f(x) = \log_3(x^2) + \log_3(x) \) 1. **Rewrite the function**: \[ f(x) = \log_3(x^2) + \log_3(x) = \log_3(x^2 \cdot x) = \log_3(x^3) \] 2. **Differentiate the function**: Using the chain rule: \[ f'(x) = \frac{3}{x \ln(3)} \] 3. **Set the derivative equal to zero**: Since \( \frac{3}{x \ln(3)} \) is never zero, we need to find where it is undefined, which occurs at \( x = 0 \). However, \( x \) must be positive for the logarithm to be defined. 4. **Determine the intervals**: The function is defined for \( x > 0 \). 5. **Test the interval**: - For \( x > 0 \), \( f'(x) > 0 \) (since both \( 3 \) and \( \ln(3) \) are positive). - Therefore, \( f(x) \) is increasing for \( x > 0 \). ### Final Results: - For \( f(x) = \frac{x^4}{4} + \frac{x^3}{3} - 3x^2 + 5 \): - Increasing on \( (-3, 0) \) and \( (2, \infty) \) - Decreasing on \( (-\infty, -3) \) and \( (0, 2) \) - For \( f(x) = \log_3(x^2) + \log_3(x) \): - Increasing on \( (0, \infty) \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1E|11 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1F|9 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1C|4 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

Find the range of the following functions. f(x)=log_(e)(3x^(2)-4x+5)

Find the domain of the following functions. f(x)=(log_(2)(x+3))/((x^(2)+3x+2))

Solve the following equations. (iii) 2.x^(log_(4)3)+3^(log_4x)=27

Find the domain and range of following functions (i) f(x)=log_(e)(sinx) (ii) f(x)=log_(3)(5-4x-x^(2))

Solve the following equations (i) (log_(2)(9-2^(x)))/(3-x)=1 (ii) x^((log_(10)x+7)/(4))=10^((log_(10)x+1)

Find the inverse of the following function. (i) f(x) = sin^(-1)(x/3), x in [-3,3] (ii) f(x) = 5^(log_e x), x gt 0 (iii) f(x) = log_e (x+sqrt(x^2+1))

Find the range of the following functions (i) f(x) = log_(2)(sqrt(x-4) + sqrt(6-x)), 4 le x le 6 (ii) f(x) = 9^(x) - 3^(x) + 1

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Find the integral solutions of the equation 4(log)_(x//2)(x)+2(log)_(4"x")(x^2)=3(log)_(2"x")(x^3)

Solve the following inequation . (xx) log_(5x+4)x^2lelog_(5x+4)(2x+3)