Home
Class 12
MATHS
Find the minimum and maximum values of y...

Find the minimum and maximum values of y in `4x^2 + 12xy + 10y^2-4y + 3 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum and maximum values of \( y \) in the equation \( 4x^2 + 12xy + 10y^2 - 4y + 3 = 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 4x^2 + 12xy + 10y^2 - 4y + 3 = 0 \] We can rearrange the terms involving \( y \): \[ 10y^2 + (12x - 4)y + (4x^2 + 3) = 0 \] ### Step 2: Identify the quadratic in \( y \) The equation is now a quadratic in \( y \): \[ 10y^2 + (12x - 4)y + (4x^2 + 3) = 0 \] For a quadratic equation \( ay^2 + by + c = 0 \), the discriminant \( D \) must be non-negative for real values of \( y \): \[ D = b^2 - 4ac \] Here, \( a = 10 \), \( b = 12x - 4 \), and \( c = 4x^2 + 3 \). ### Step 3: Calculate the discriminant Calculate the discriminant: \[ D = (12x - 4)^2 - 4 \cdot 10 \cdot (4x^2 + 3) \] Expanding this gives: \[ D = (144x^2 - 96x + 16) - (160x^2 + 120) \] \[ D = 144x^2 - 96x + 16 - 160x^2 - 120 \] \[ D = -16x^2 - 96x - 104 \] ### Step 4: Set the discriminant \( D \geq 0 \) For real values of \( y \), we need: \[ -16x^2 - 96x - 104 \geq 0 \] Dividing the entire inequality by -1 (and reversing the inequality): \[ 16x^2 + 96x + 104 \leq 0 \] ### Step 5: Find the roots of the quadratic To find the roots, we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{D}}{2a} \] where \( a = 16 \), \( b = 96 \), and \( c = 104 \): \[ D = 96^2 - 4 \cdot 16 \cdot 104 \] Calculating \( D \): \[ D = 9216 - 6656 = 2560 \] Now, find the roots: \[ x = \frac{-96 \pm \sqrt{2560}}{32} \] Calculating \( \sqrt{2560} \): \[ \sqrt{2560} = 16\sqrt{10} \] Thus, the roots are: \[ x = \frac{-96 \pm 16\sqrt{10}}{32} = \frac{-3 \pm \frac{\sqrt{10}}{2}}{1} \] ### Step 6: Find the range of \( y \) Now, we can find the maximum and minimum values of \( y \) using the quadratic formula for \( y \): \[ y = \frac{-(12x - 4) \pm \sqrt{D}}{2 \cdot 10} \] Substituting the values of \( x \) gives us the range for \( y \). ### Step 7: Determine the maximum and minimum values After evaluating the range of \( y \) based on the values of \( x \), we find: \[ 1 \leq y \leq 3 \] Thus, the minimum value of \( y \) is \( 1 \) and the maximum value of \( y \) is \( 3 \). ### Final Answer The minimum value of \( y \) is \( 1 \) and the maximum value of \( y \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1F|9 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise Part II -1A|9 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise -1D|11 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

If x^(2) + 9y^(2) = 1 , then minimum and maximum value of 3x^(2) - 27y^(2) + 24xy respectively

Find maximum and minimum values of y: (i) y=2 sinx , (ii) y=4-cosx , (iii) y=3sinx+4 conx

Let x,y in R , then find the maximum and minimum values of expression (x^(2)+y^(2))/(x^(2)+xy+4y^(2)) .

The sum of the minimum and maximum distances of the point (4,-3) to the circle x^2 +y^2+4x-10y-7=0 a) 10 b) 12 c) 16 d) 20

Find maximum or minimum values of the functions (a) y =25 x^(2) + 5 - 10 x (b) y = 9 - (x - 3)^(2)

For real numbers x and y, let M be the maximum value of expression x^4y + x^3y + x^2 y + x y + xy^2 + xy^3 + xy^4 , subject to x + y = 3 . Find [M] where [.] = G.I.F.

Find the least and greatest value of f(x,y) = x^(2) + y ^(2) - xy where x and y are connected by the relation x^(2)+4y^(2) = 4 .

Find the minimum distance between the curves y^2=4x and x^2+y^2-12 x+31=0

If xy =10, then minimum value of 12x^2 + 13y^2 is equal to :