Home
Class 12
MATHS
Maximum value of (sqrt(-3+4x-x^2)+4)^2+(...

Maximum value of `(sqrt(-3+4x-x^2)+4)^2+(x-5)^2` `(where 1 le x le 3)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \((\sqrt{-3 + 4x - x^2} + 4)^2 + (x - 5)^2\) for \(1 \leq x \leq 3\), we will follow these steps: ### Step 1: Define the function Let \(y = (\sqrt{-3 + 4x - x^2} + 4)^2 + (x - 5)^2\). ### Step 2: Determine the domain of the square root The expression inside the square root, \(-3 + 4x - x^2\), must be non-negative: \[ -3 + 4x - x^2 \geq 0. \] Rearranging gives: \[ x^2 - 4x + 3 \leq 0. \] Factoring the quadratic: \[ (x - 1)(x - 3) \leq 0. \] This inequality holds for \(1 \leq x \leq 3\). ### Step 3: Find the critical points To find the maximum value, we need to differentiate \(y\) with respect to \(x\) and set the derivative to zero. First, we simplify \(y\): \[ y = (\sqrt{-3 + 4x - x^2} + 4)^2 + (x - 5)^2. \] Let \(u = \sqrt{-3 + 4x - x^2}\), then: \[ y = (u + 4)^2 + (x - 5)^2. \] ### Step 4: Differentiate \(y\) We will differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 2(u + 4) \cdot \frac{du}{dx} + 2(x - 5). \] To find \(\frac{du}{dx}\): \[ u = \sqrt{-3 + 4x - x^2} \Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{-3 + 4x - x^2}}(4 - 2x). \] Substituting \(\frac{du}{dx}\) back into \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 2(\sqrt{-3 + 4x - x^2} + 4) \cdot \frac{1}{2\sqrt{-3 + 4x - x^2}}(4 - 2x) + 2(x - 5). \] ### Step 5: Set the derivative to zero Setting \(\frac{dy}{dx} = 0\) will give us critical points. This may be complex, so we can also evaluate \(y\) at the endpoints \(x = 1\) and \(x = 3\). ### Step 6: Evaluate \(y\) at the endpoints 1. **At \(x = 1\)**: \[ y(1) = (\sqrt{-3 + 4(1) - (1)^2} + 4)^2 + (1 - 5)^2 = (\sqrt{0} + 4)^2 + (-4)^2 = 4^2 + 16 = 16 + 16 = 32. \] 2. **At \(x = 3\)**: \[ y(3) = (\sqrt{-3 + 4(3) - (3)^2} + 4)^2 + (3 - 5)^2 = (\sqrt{0} + 4)^2 + (-2)^2 = 4^2 + 4 = 16 + 4 = 20. \] ### Step 7: Compare values Now we compare the values: - \(y(1) = 32\) - \(y(3) = 20\) ### Conclusion The maximum value of the expression on the interval \(1 \leq x \leq 3\) is: \[ \boxed{32}. \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part III|19 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part IV comprehension|7 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part I|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

Assertion (A): The maximum value of log_(1//3)(x^(2)-4x+5) is zero Reason (R): log_(a)x le 0 for x ge 1 and 0 lt a lt 1

The largest value of 2x^(3)-3x^(2)-12x+5 for -2 le x le 2 occurs when

2 le 3x - 4 le 5 find x

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

The maximum value of [x(x-1)+1]^(1/3), 0 le x le 1 is:

-5 le (2-3x)/4 le 9

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|

Let 1 le x le 256 and M be the maximum value of (log_(2)x)^(4)+16(log_(2)x)^(2)log_(2)((16)/(x)) . The sum of the digits of M is :

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

RESONANCE ENGLISH-APPLICATION OF DERIVATIVES-Exersise-2 Part II
  1. The sum of the ordinates of point of contacts of the common tangent to...

    Text Solution

    |

  2. if p in (0,1//e)then the number of the distinct roots of the equation...

    Text Solution

    |

  3. A lamp is 50 ft above the ground. A ball is dropped from the same heig...

    Text Solution

    |

  4. A variable Delta ABC in the xy plane has its orthocentre at vertex B ,...

    Text Solution

    |

  5. Function defined by f(x) =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))...

    Text Solution

    |

  6. Find lim( xto0) [(3x)/(2sinx + tanx)] where [ . ] denotes the GIF.

    Text Solution

    |

  7. The minimum value of k for which f(x)=2e^(x)-ke^(x)-ke^(-x)+(2k+1)x-3 ...

    Text Solution

    |

  8. if has set of all values of the parameter 'a' for which the function...

    Text Solution

    |

  9. If ln2pi ltlog2 (2+sqrt3)lt ln3pi, then number of roots the equation 4...

    Text Solution

    |

  10. For -1<=p<=1 , the equation 4x^3-3x-p = 0 has 'n' distinct real ro...

    Text Solution

    |

  11. Least value of the function f(x)=2^(x2)-1+(2)/(2(x2)+1)is

    Text Solution

    |

  12. Real root of the equation (x-1)^(2013) +(x-2)^ (2013) +(x-3)^ (20...

    Text Solution

    |

  13. The exhaustive set of value of 'a' for which the function f(x)=a/3(x...

    Text Solution

    |

  14. f(x) is polynomial function of degree 6, which satisfies ("lim")(xvec...

    Text Solution

    |

  15. Maximum value of (sqrt(-3+4x-x^2)+4)^2+(x-5)^2 (where 1 le x le 3) is

    Text Solution

    |

  16. The three sides of a trapezium are equal each being 6 cms long. Le...

    Text Solution

    |

  17. A sheet of poster has its area 18 m^(2). The margin at the top & ...

    Text Solution

    |

  18. The fuel charges for running a train are proportional to the square of...

    Text Solution

    |

  19. Let f(x) = Max. {x^2, (1 - x)^2, 2x(1 - x)} where x in [0, 1] If Rol...

    Text Solution

    |

  20. For every twice differentiable function f(x) the value of |f(x)| g...

    Text Solution

    |