Home
Class 12
MATHS
Let g(x)=2f(x/2)+f(1-x) and f^(primeprim...

Let `g(x)=2f(x/2)+f(1-x)` and `f^(primeprime)(x)<0` in `0<=x<=1` then g(x)

A

decreases in `[0,(2)/(3)]`

B

decreases `((2)/(3),1]`

C

increases in `[0,(2)/(3))`

D

increases in `[(2)/(3),1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) = 2f\left(\frac{x}{2}\right) + f(1-x) \) and determine the intervals where it is increasing or decreasing, given that \( f''(x) < 0 \) for \( 0 \leq x \leq 1 \). ### Step-by-Step Solution: 1. **Differentiate \( g(x) \)**: \[ g'(x) = \frac{d}{dx}\left(2f\left(\frac{x}{2}\right)\right) + \frac{d}{dx}\left(f(1-x)\right) \] Using the chain rule: \[ g'(x) = 2 \cdot f'\left(\frac{x}{2}\right) \cdot \frac{1}{2} + f'(1-x) \cdot (-1) \] Simplifying gives: \[ g'(x) = f'\left(\frac{x}{2}\right) - f'(1-x) \] 2. **Determine when \( g'(x) > 0 \) (increasing)**: \[ g'(x) > 0 \implies f'\left(\frac{x}{2}\right) > f'(1-x) \] Since \( f''(x) < 0 \), \( f'(x) \) is a decreasing function. 3. **Analyze the inequality**: Since \( f' \) is decreasing, if \( \frac{x}{2} < 1 - x \), then: \[ f'\left(\frac{x}{2}\right) > f'(1-x) \] This gives us: \[ \frac{x}{2} < 1 - x \implies x < 2 - 2x \implies 3x < 2 \implies x < \frac{2}{3} \] 4. **Determine the interval for increasing \( g(x) \)**: Thus, \( g(x) \) is increasing for: \[ 0 \leq x < \frac{2}{3} \] 5. **Determine when \( g'(x) < 0 \) (decreasing)**: \[ g'(x) < 0 \implies f'\left(\frac{x}{2}\right) < f'(1-x) \] This occurs when \( \frac{x}{2} > 1 - x \): \[ \frac{x}{2} > 1 - x \implies x > 2 - 2x \implies 3x > 2 \implies x > \frac{2}{3} \] 6. **Determine the interval for decreasing \( g(x) \)**: Thus, \( g(x) \) is decreasing for: \[ \frac{2}{3} < x \leq 1 \] ### Final Conclusion: - \( g(x) \) is **increasing** on the interval \( [0, \frac{2}{3}) \). - \( g(x) \) is **decreasing** on the interval \( (\frac{2}{3}, 1] \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part IV comprehension|7 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-3 Part I|21 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part II|21 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(0)=f'(0)=0 and f^(primeprime)(x)=sec^4x+4 then find f(x)

Suppose that f(x) is a quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f^(primeprime)(x), then for any real x (where f^(prime)(x) and f^(primeprime)(x) represent 1st and 2nd derivative, respectively). (a) g(x) 0 (c). g(x)=0 (d). g(x)geq0

A nonzero polynomial with real coefficient has the property that f(x)=f^(prime)(x)dot f^(primeprime)(x)dot If a is the leading coefficient of f(x), then the value of 1/(2a) is____

A nonzero polynomial with real coefficient has the property that f(x)=f^(prime)(x)dot f^(primeprime)(x)dot If a is the leading coefficient of f(x), then the value of 1/(2a) is____

A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+2y)+f(2x-2y))dot If f^(prime)(0)=1/2,t h e n (a) f^(primeprime)(x)=f(x)=0 (b) 4f^(primeprime)(x)+f(x)=0 (c) f^(primeprime)(x)+f(x)=0 (d) 4f^(primeprime)(x)-f(x)=0

Let g(x)=f(x)+f(1-x) and f''(x)<0 , when x in (0,1) . Then f(x) is

If f(x) is continuous in [0,pi] such that f(pi)=3 and int_0^(pi/2)(f(2x)+f^(primeprime)(2x))sin2x dx=7 then find f(0).

Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous. Then, f'(x) equals

If F(x)=f(x)dotg(x) and f^(prime)(x)dotg^(prime)(x)=c , prove that (F^(primeprime))/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

RESONANCE ENGLISH-APPLICATION OF DERIVATIVES-Exersise-2 Part III
  1. If tangent to curve 2y^3 = ax^2+ x^3 at point (a, a) cuts off interce...

    Text Solution

    |

  2. For the curve x=t^(2) +3t -8 ,y=2t^(2)-2t -5 at point (2,-1)

    Text Solution

    |

  3. Which of the following statements is//are correct?

    Text Solution

    |

  4. If f(x)=2x+cot^(-1)x+log(sqrt(1+x^2)-x) then f(x) increase in (0,oo) ...

    Text Solution

    |

  5. Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

    Text Solution

    |

  6. Let f(x)=x^(m/n) for x in R where m and n are integers , m even an...

    Text Solution

    |

  7. Let f and g be two differentiable functions defined on an interval I s...

    Text Solution

    |

  8. Let g(x)=(f(x))^3-3(f(x))^2+4f(x)+5x+3sinx+4cosxAAx in Rdot Then prov...

    Text Solution

    |

  9. if p,q,r be real then the interval in which f(x) =|underset(pr" ...

    Text Solution

    |

  10. If f(x)=(x^(2))/(2-2 cosx) and g(x) =(x^(2))/(6x-6sinx) where 0ltxlt1.

    Text Solution

    |

  11. Let f(x) =(x-1^(4))(x-2^(n)),n in N.Then f(x) has

    Text Solution

    |

  12. Discuss maxima/minima of f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2))

    Text Solution

    |

  13. If f(x)=alog|x|+b x^2+x has extreme values at x=-1 and at x=2 , then f...

    Text Solution

    |

  14. if f(x) ={{:(-sqrt(1-x^(2))),(0 le x le 1);((-x)(x gt 1)):} then (1)...

    Text Solution

    |

  15. if f(x) = tan^(1) x -(1//2) ln x. then

    Text Solution

    |

  16. Let f(x) =(40)/(3x^(4) +8x^(3) -18x^(2)+60). Which of the following ...

    Text Solution

    |

  17. A function f(x) =(x^(2) -3x +2)/(x^(2)+ 2x -3) is

    Text Solution

    |

  18. Let f(x) be a differentiable function and f(a)=f(b)=0 (alpha ltbeta), ...

    Text Solution

    |

  19. For all x in [1, 2] Let f"(x) of a non-constant function f(x) exist a...

    Text Solution

    |