Home
Class 12
MATHS
if f(x) = tan^(1) x -(1//2) ln x. then...

if f(x) = `tan^(1) x -(1//2) ln x.` then

A

the greatest value of f(x) on `[ 1//sqrt(3) , sqrt(3)]` is `pi//6 +(1//4) en 3`

B

the least value of f(x) on `[ 1//sqrt(3),sqrt(3) ] " is " pi//3 -(1//4) en 3`

C

f(x) decreases on `(0,oo)`

D

f(x) increases on `(-oo,0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the function given and find its critical points and behavior. The function is: \[ f(x) = \tan^{-1}(x) - \frac{1}{2} \ln(x) \] ### Step 1: Find the derivative of \( f(x) \) To find the critical points, we first need to compute the derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx} \left( \tan^{-1}(x) \right) - \frac{1}{2} \frac{d}{dx} \left( \ln(x) \right) \] Using the derivatives: - The derivative of \( \tan^{-1}(x) \) is \( \frac{1}{1+x^2} \) - The derivative of \( \ln(x) \) is \( \frac{1}{x} \) Thus, we have: \[ f'(x) = \frac{1}{1+x^2} - \frac{1}{2} \cdot \frac{1}{x} \] ### Step 2: Simplify the derivative Now, we need to simplify \( f'(x) \): \[ f'(x) = \frac{1}{1+x^2} - \frac{1}{2x} \] To combine these fractions, we find a common denominator: \[ f'(x) = \frac{2x - (1+x^2)}{2x(1+x^2)} = \frac{2x - 1 - x^2}{2x(1+x^2)} \] Rearranging gives: \[ f'(x) = \frac{-(x^2 - 2x + 1)}{2x(1+x^2)} = \frac{-(x-1)^2}{2x(1+x^2)} \] ### Step 3: Find critical points Setting \( f'(x) = 0 \): \[ -(x-1)^2 = 0 \] This gives us the critical point: \[ x = 1 \] ### Step 4: Analyze the sign of \( f'(x) \) To determine the behavior of \( f(x) \), we analyze the sign of \( f'(x) \): - For \( x < 1 \), \( (x-1)^2 > 0 \) hence \( f'(x) < 0 \) (decreasing). - For \( x > 1 \), \( (x-1)^2 > 0 \) hence \( f'(x) < 0 \) (decreasing). Thus, \( f(x) \) is decreasing for all \( x > 0 \). ### Step 5: Evaluate \( f(x) \) at the endpoints Now we need to evaluate \( f(x) \) at the endpoints of the interval \( \left[ \frac{1}{\sqrt{3}}, \sqrt{3} \right] \): 1. **At \( x = \frac{1}{\sqrt{3}} \)**: \[ f\left(\frac{1}{\sqrt{3}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \frac{1}{2} \ln\left(\frac{1}{\sqrt{3}}\right) \] \[ = \frac{\pi}{6} + \frac{1}{2} \ln(\sqrt{3}) = \frac{\pi}{6} + \frac{1}{4} \ln(3) \] 2. **At \( x = \sqrt{3} \)**: \[ f(\sqrt{3}) = \tan^{-1}(\sqrt{3}) - \frac{1}{2} \ln(\sqrt{3}) \] \[ = \frac{\pi}{3} - \frac{1}{4} \ln(3) \] ### Step 6: Compare values Since \( f(x) \) is decreasing, the greatest value of \( f(x) \) on the interval \( \left[ \frac{1}{\sqrt{3}}, \sqrt{3} \right] \) occurs at \( x = \frac{1}{\sqrt{3}} \). ### Conclusion The greatest value of \( f(x) \) on the interval \( \left[ \frac{1}{\sqrt{3}}, \sqrt{3} \right] \) is: \[ f\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} + \frac{1}{4} \ln(3) \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part IV comprehension|7 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-3 Part I|21 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part II|21 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(X) = tan^(-1)x-(1)/(2)log_(e)x in ((1)/(sqrt(3)),sqrt(3))

The least value of the f(x) given by f(x)=tan^(-1)x-1/2 log_ex " in the interval "[1//sqrt3,sqrt3] , is

If f(x) = (1−x) ^ 1 / 2 and g(x)=ln(x) then the domain of (gof)(x) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

Integration of 1/(1+((log)_e x)^2) with respect to (log)_e x is (tan^(-1)((log)_e x)/x)+C (b) tan^(-1)((log)_e x)+C (c) (tan^(-1)x)/x+C (d) none of these

Statement-1 : f : R rarr R, f(x) = x^(2) log(|x| + 1) is an into function. and Statement-2 : f(x) = x^(2) log(|x|+1) is a continuous even function.

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

RESONANCE ENGLISH-APPLICATION OF DERIVATIVES-Exersise-2 Part III
  1. If tangent to curve 2y^3 = ax^2+ x^3 at point (a, a) cuts off interce...

    Text Solution

    |

  2. For the curve x=t^(2) +3t -8 ,y=2t^(2)-2t -5 at point (2,-1)

    Text Solution

    |

  3. Which of the following statements is//are correct?

    Text Solution

    |

  4. If f(x)=2x+cot^(-1)x+log(sqrt(1+x^2)-x) then f(x) increase in (0,oo) ...

    Text Solution

    |

  5. Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

    Text Solution

    |

  6. Let f(x)=x^(m/n) for x in R where m and n are integers , m even an...

    Text Solution

    |

  7. Let f and g be two differentiable functions defined on an interval I s...

    Text Solution

    |

  8. Let g(x)=(f(x))^3-3(f(x))^2+4f(x)+5x+3sinx+4cosxAAx in Rdot Then prov...

    Text Solution

    |

  9. if p,q,r be real then the interval in which f(x) =|underset(pr" ...

    Text Solution

    |

  10. If f(x)=(x^(2))/(2-2 cosx) and g(x) =(x^(2))/(6x-6sinx) where 0ltxlt1.

    Text Solution

    |

  11. Let f(x) =(x-1^(4))(x-2^(n)),n in N.Then f(x) has

    Text Solution

    |

  12. Discuss maxima/minima of f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2))

    Text Solution

    |

  13. If f(x)=alog|x|+b x^2+x has extreme values at x=-1 and at x=2 , then f...

    Text Solution

    |

  14. if f(x) ={{:(-sqrt(1-x^(2))),(0 le x le 1);((-x)(x gt 1)):} then (1)...

    Text Solution

    |

  15. if f(x) = tan^(1) x -(1//2) ln x. then

    Text Solution

    |

  16. Let f(x) =(40)/(3x^(4) +8x^(3) -18x^(2)+60). Which of the following ...

    Text Solution

    |

  17. A function f(x) =(x^(2) -3x +2)/(x^(2)+ 2x -3) is

    Text Solution

    |

  18. Let f(x) be a differentiable function and f(a)=f(b)=0 (alpha ltbeta), ...

    Text Solution

    |

  19. For all x in [1, 2] Let f"(x) of a non-constant function f(x) exist a...

    Text Solution

    |