Home
Class 12
MATHS
If f(x) = \begin{vmatrix} cos2x & cos2x...

If `f(x) = \begin{vmatrix} cos2x & cos2x & sin2x \\ -cosx & cosx & -sinx\\ sinx & sinx & cosx \end{vmatrix}` then

A

a. f(x) attains its minimum at x=0

B

b. f(x) attains its maximum at x=0

C

c. f'(x) =0 at more than three points in `(-pi , pi)`

D

d. f(x) =0 at exactly three points in `(-pi, pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step-by-step, we need to evaluate the determinant and then analyze the function \( f(x) \). ### Step 1: Evaluate the Determinant Given: \[ f(x) = \begin{vmatrix} \cos 2x & \cos 2x & \sin 2x \\ -\cos x & \cos x & -\sin x \\ \sin x & \sin x & \cos x \end{vmatrix} \] To evaluate the determinant, we can use the rule of Sarrus or cofactor expansion. Here, we will use cofactor expansion along the first row. \[ f(x) = \cos 2x \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} - \cos 2x \begin{vmatrix} -\cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} + \sin 2x \begin{vmatrix} -\cos x & \cos x \\ \sin x & \sin x \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1 \] Calculating the second determinant: \[ \begin{vmatrix} -\cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} = -\cos x \cdot \cos x - (-\sin x)(\sin x) = -\cos^2 x + \sin^2 x \] Calculating the third determinant: \[ \begin{vmatrix} -\cos x & \cos x \\ \sin x & \sin x \end{vmatrix} = -\cos x \cdot \sin x - \sin x \cdot \cos x = -2 \sin x \cos x = -\sin 2x \] Now substituting back into the expression for \( f(x) \): \[ f(x) = \cos 2x (1 - (-\cos^2 x + \sin^2 x)) + \sin 2x (-\sin 2x) \] \[ = \cos 2x (1 + \cos^2 x - \sin^2 x) - \sin^2 2x \] Using the identity \( \cos^2 x - \sin^2 x = \cos 2x \): \[ = \cos 2x (1 + \cos 2x) - \sin^2 2x \] \[ = \cos 2x + \cos^2 2x - \sin^2 2x \] \[ = \cos 2x + \cos 4x \] ### Final Expression for \( f(x) \) Thus, we have: \[ f(x) = \cos 2x + \cos 4x \] ### Step 2: Find the First Derivative \( f'(x) \) To find the critical points, we will differentiate \( f(x) \): \[ f'(x) = -2 \sin 2x - 4 \sin 4x \] ### Step 3: Find Critical Points Setting \( f'(x) = 0 \): \[ -2 \sin 2x - 4 \sin 4x = 0 \] \[ \sin 2x + 2 \sin 4x = 0 \] ### Step 4: Analyze the Second Derivative \( f''(x) \) Now, we differentiate \( f'(x) \) to find \( f''(x) \): \[ f''(x) = -4 \cos 2x - 16 \cos 4x \] ### Step 5: Determine Maxima or Minima Evaluate \( f''(0) \): \[ f''(0) = -4 \cdot 1 - 16 \cdot 1 = -20 \] Since \( f''(0) < 0 \), there is a local maximum at \( x = 0 \). ### Step 6: Check for Other Critical Points From \( \sin 2x + 2 \sin 4x = 0 \), we can find other critical points in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). ### Conclusion The critical points are \( x = 0, -\frac{\pi}{2}, \frac{\pi}{2} \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-3 Part II|22 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise High Level Problems (HLP)|35 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-2 Part IV comprehension|7 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)

If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

Sqrrtcos2x ​ + (1+sin2x) ​ =2 (sinx+cosx) ​ , if-

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

Solve for x: sin2x+sinx +cos2x+cosx +1 =0

If (sinx-cosx)= 0 then find (sin^3 x- cos^3x)

(cos^3x-sin^3x)/(cosx-sinx)

Maximum value of cosx (sinx +cos x) is equal to :

RESONANCE ENGLISH-APPLICATION OF DERIVATIVES-Exersise-3 Part I
  1. If f(x) is a polynomial of degree 4 having extremum at x=1,2 and lim(x...

    Text Solution

    |

  2. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  3. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  4. The number of distinct real roots of x^4-4x^3+12 x 62+x-1=0i sdot

    Text Solution

    |

  5. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  6. Let I RvecI R be defined as f(x)=|x|++x^2-1|dot The total number of po...

    Text Solution

    |

  7. The number of points in (-oo,oo), for which x^2-xsinx-cosx=0, is

    Text Solution

    |

  8. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |

  9. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  10. The funciton f(X) =2|x|+|x+2|-||x+2|-|x|| has a local mimimum or a lo...

    Text Solution

    |

  11. Let f:[0,1]rarrR be a function. Suppose the function f is twice differ...

    Text Solution

    |

  12. Let a in R and let f: Rvec be given by f(x)=x^5-5x+a , then (a) f(x...

    Text Solution

    |

  13. The slope of the tangent to the curve (y-x^5)^2=x(1+x^2)^2 at the poin...

    Text Solution

    |

  14. A cylindrical container is to be made from certain solid material with...

    Text Solution

    |

  15. Let f,g:[-1,2]vecR be continuous functions which are twice differentia...

    Text Solution

    |

  16. Let f:Rrarr(0,oo)andg:RrarrR be twice differentiable functions such th...

    Text Solution

    |

  17. If f:R->R is a twice differentiable function such that f''(x) > 0 for ...

    Text Solution

    |

  18. If f:R is a differentiable fucntion such that f(x) gt 2f(x) for all x...

    Text Solution

    |

  19. If f(x) = \begin{vmatrix} cos2x & cos2x & sin2x \\ -cosx & cosx & -...

    Text Solution

    |

  20. For every twice differentiable function f: R to [-2,2] with (f^(0))^(2...

    Text Solution

    |