Home
Class 12
MATHS
Find the interval of increase and decr...

Find the interval of increase and decrease for the function `g(x) =2f((x^(2))/(2)) +f((27)/(2)-x^(2))` where `f''(x) lt 0 " for all " x in R`

Text Solution

AI Generated Solution

The correct Answer is:
To find the intervals of increase and decrease for the function \( g(x) = 2f\left(\frac{x^2}{2}\right) + f\left(\frac{27}{2} - x^2\right) \), where \( f''(x) < 0 \) for all \( x \in \mathbb{R} \), we will follow these steps: ### Step 1: Find the derivative \( g'(x) \) We start by differentiating \( g(x) \): \[ g'(x) = \frac{d}{dx}\left(2f\left(\frac{x^2}{2}\right)\right) + \frac{d}{dx}\left(f\left(\frac{27}{2} - x^2\right)\right) \] Using the chain rule, we get: \[ g'(x) = 2f'\left(\frac{x^2}{2}\right) \cdot \frac{d}{dx}\left(\frac{x^2}{2}\right) + f'\left(\frac{27}{2} - x^2\right) \cdot \frac{d}{dx}\left(\frac{27}{2} - x^2\right) \] Calculating the derivatives: \[ \frac{d}{dx}\left(\frac{x^2}{2}\right) = x \quad \text{and} \quad \frac{d}{dx}\left(\frac{27}{2} - x^2\right) = -2x \] Substituting these into the derivative: \[ g'(x) = 2f'\left(\frac{x^2}{2}\right) \cdot x - 2x f'\left(\frac{27}{2} - x^2\right) \] Factoring out \( 2x \): \[ g'(x) = 2x \left( f'\left(\frac{x^2}{2}\right) - f'\left(\frac{27}{2} - x^2\right) \right) \] ### Step 2: Find critical points To find the critical points, we set \( g'(x) = 0 \): \[ 2x \left( f'\left(\frac{x^2}{2}\right) - f'\left(\frac{27}{2} - x^2\right) \right) = 0 \] This gives us two cases: 1. \( 2x = 0 \) which implies \( x = 0 \) 2. \( f'\left(\frac{x^2}{2}\right) - f'\left(\frac{27}{2} - x^2\right) = 0 \) ### Step 3: Analyze the second case From the second case, we have: \[ f'\left(\frac{x^2}{2}\right) = f'\left(\frac{27}{2} - x^2\right) \] Given that \( f''(x) < 0 \) for all \( x \), we know that \( f'(x) \) is a decreasing function. Therefore, if \( f'\left(a\right) = f'\left(b\right) \) for \( a \neq b \), it implies \( a = b \). Thus, we can set: \[ \frac{x^2}{2} = \frac{27}{2} - x^2 \] Solving this equation: \[ x^2 + x^2 = 27 \quad \Rightarrow \quad 2x^2 = 27 \quad \Rightarrow \quad x^2 = \frac{27}{2} \quad \Rightarrow \quad x = \pm \sqrt{\frac{27}{2}} = \pm \frac{3\sqrt{3}}{2} \] ### Step 4: Identify critical points The critical points are: - \( x = 0 \) - \( x = -\frac{3\sqrt{3}}{2} \) - \( x = \frac{3\sqrt{3}}{2} \) ### Step 5: Determine intervals of increase and decrease We will test the sign of \( g'(x) \) in the intervals formed by these critical points: 1. \( (-\infty, -\frac{3\sqrt{3}}{2}) \) 2. \( (-\frac{3\sqrt{3}}{2}, 0) \) 3. \( (0, \frac{3\sqrt{3}}{2}) \) 4. \( (\frac{3\sqrt{3}}{2}, \infty) \) #### Interval 1: \( (-\infty, -\frac{3\sqrt{3}}{2}) \) Choose \( x = -4 \): \[ g'(-4) = 2(-4) \left( f'\left(\frac{16}{2}\right) - f'\left(\frac{27}{2} - 16\right) \right) = -8 \left( f'(8) - f'(-\frac{7}{2}) \right) \] Since \( f' \) is decreasing, \( f'(8) < f'(-\frac{7}{2}) \) implies \( g'(-4) > 0 \) (increasing). #### Interval 2: \( (-\frac{3\sqrt{3}}{2}, 0) \) Choose \( x = -1 \): \[ g'(-1) = 2(-1) \left( f'\left(\frac{1}{2}\right) - f'\left(\frac{27}{2} - 1\right) \right) \] Since \( f' \) is decreasing, \( f'\left(\frac{1}{2}\right) > f'\left(\frac{25}{2}\right) \) implies \( g'(-1) < 0 \) (decreasing). #### Interval 3: \( (0, \frac{3\sqrt{3}}{2}) \) Choose \( x = 1 \): \[ g'(1) = 2(1) \left( f'\left(\frac{1}{2}\right) - f'\left(\frac{25}{2}\right) \right) \] Since \( f'\left(\frac{1}{2}\right) > f'\left(\frac{25}{2}\right) \), \( g'(1) > 0 \) (increasing). #### Interval 4: \( (\frac{3\sqrt{3}}{2}, \infty) \) Choose \( x = 4 \): \[ g'(4) = 2(4) \left( f'\left(\frac{16}{2}\right) - f'\left(\frac{27}{2} - 16\right) \right) \] Since \( f'(8) < f'(-\frac{7}{2}) \), \( g'(4) < 0 \) (decreasing). ### Conclusion The intervals of increase and decrease for \( g(x) \) are: - **Increasing**: \( (-\infty, -\frac{3\sqrt{3}}{2}) \) and \( (0, \frac{3\sqrt{3}}{2}) \) - **Decreasing**: \( (-\frac{3\sqrt{3}}{2}, 0) \) and \( (\frac{3\sqrt{3}}{2}, \infty) \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise Exersise-3 Part II|22 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos

Similar Questions

Explore conceptually related problems

Find the intervals of decrease and increase for the function f(x)=cos(pi/x)

Find the intervals for which f(x)=x^4-2x^2 increasing or decreasing.

Find the interval in which the function f(x) =2 log (x-2) -x^(2)+4x +1 is increasing .

Find the intervals in which f(x)=x^2+2x-5 is increasing or decreasing.

Find the intervals in which the following function is increasing and decreasing f(x)=x^2-6x+7

The set of all points where f(x) is increasing is (a,b)cup(c,oo) . Find [a+b+c] (where [.] denotes the greatest integre function) given that f(x)=2f((x^(2))/(2))+f(6-x^(2)),AAx inR andf''(x)gt0,AAx in R.

Find the intervals in which f(x)=-x^2-2x+15 is increasing or decreasing.

Find the intervals in which f(x)=-x^2-2x+15 is increasing or decreasing.

Find the intervals for which f(x)=x^4-2x^2 is increasing or decreasing.

Find the intervals in which f(x)=10-6x-2x^2 is increasing or decreasing.

RESONANCE ENGLISH-APPLICATION OF DERIVATIVES-High Level Problems (HLP)
  1. Find the possible values of a such that the inequality 3-x^(2)gt|x-a| ...

    Text Solution

    |

  2. lf f'(x) > 0,f"(x)>0AA x in (0,1) and f(0)=0,f(1)=1,then prove that...

    Text Solution

    |

  3. Find the interval of increase and decrease for the function g(x) =...

    Text Solution

    |

  4. The interval to which a may belong so that the function f(x)=(1-(sqrt(...

    Text Solution

    |

  5. Find positive real numbers 'a' and 'b' such that f(x) =ax-bx^(3) has...

    Text Solution

    |

  6. For any acute angled triangleABC,(sinA)/(A)+(sinB)/(B)+(sinC)/(C ) can

    Text Solution

    |

  7. Find the minimum value of f(x) =8^(x) +8^(-x) -4(4^(x)+4^(-x)) , AA x ...

    Text Solution

    |

  8. Show that height of the cylinder of greatest volume which can be in...

    Text Solution

    |

  9. The cosine of the angle at the vertex of an isosceles triangle having ...

    Text Solution

    |

  10. A cone is made from a circular sheet of radius sqrt3 by cutting out a ...

    Text Solution

    |

  11. Suppose velocity of waves of wave length lambda in the Atlantic ocea...

    Text Solution

    |

  12. Find the minimum distance of origin from the curve ax^(2) +2bxy+ay^(2)...

    Text Solution

    |

  13. Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

    Text Solution

    |

  14. Find which of the two larger log(1+x) " or " (tan^(-1)x)/(1+x).

    Text Solution

    |

  15. Letf'(sin x)lt0 and f''(sin x) gt0 forall x in (0,(pi)/(2)) and g(x) =...

    Text Solution

    |

  16. if f(x) =(2013) x^(2012) -(2012)x^(2011)-2014x+1007 then show that f...

    Text Solution

    |

  17. A function f is differentiable in the interval 0 le x le 5 such tha...

    Text Solution

    |

  18. Let f(x)a n dg(x) be differentiable functions such that f^(prime)(x)g(...

    Text Solution

    |

  19. f is continuous in [a, b] and differentiable in (a, b) (where a>0 ) su...

    Text Solution

    |

  20. If phi(x) is a differentiable function AAx in Rand a inR^(+) such that...

    Text Solution

    |