Home
Class 12
MATHS
lim(trarr(pi/2)^(-))int(0)^(t) tanthetas...

`lim_(trarr(pi/2)^(-))int_(0)^(t) tanthetasqrt(costheta)ln(costheta)d theta` is equal to :

A

`-4`

B

`4`

C

`-2`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit of the integral as \( t \) approaches \( \frac{\pi}{2} \) from the left, we start with the expression: \[ \lim_{t \to \frac{\pi}{2}^-} \int_0^t \tan \theta \sqrt{\cos \theta} \ln(\cos \theta) \, d\theta \] ### Step 1: Set Up the Integral Let: \[ I = \int_0^t \tan \theta \sqrt{\cos \theta} \ln(\cos \theta) \, d\theta \] ### Step 2: Change of Variables We will use the substitution \( u = \ln(\cos \theta) \). Then, we have: \[ \cos \theta = e^u \quad \text{and} \quad d\theta = \frac{-\sin \theta}{\cos \theta} \, du = -\tan \theta \, du \] This means: \[ \tan \theta \, d\theta = -du \] ### Step 3: Express the Integral in Terms of \( u \) Substituting into the integral, we get: \[ I = \int_{u_0}^{u_t} -\sqrt{e^u} \cdot u \, du \] where \( u_0 = \ln(1) = 0 \) (when \( \theta = 0 \)) and \( u_t = \ln(\cos t) \) (when \( \theta = t \)). Thus, we can rewrite the integral as: \[ I = -\int_{0}^{\ln(\cos t)} \sqrt{e^u} \cdot u \, du = -\int_{0}^{\ln(\cos t)} e^{u/2} u \, du \] ### Step 4: Integration by Parts Using integration by parts, let: - \( v = u \) and \( dv = du \) - \( dw = e^{u/2} \, du \) and \( w = 2e^{u/2} \) Then, we have: \[ \int u e^{u/2} \, du = 2u e^{u/2} - \int 2 e^{u/2} \, du \] The integral of \( 2 e^{u/2} \) is: \[ 4 e^{u/2} \] Thus, \[ \int u e^{u/2} \, du = 2u e^{u/2} - 4 e^{u/2} + C \] ### Step 5: Evaluate the Integral Now, substituting back, we evaluate: \[ I = -\left[ 2u e^{u/2} - 4 e^{u/2} \right]_{0}^{\ln(\cos t)} \] Calculating the limits: - At \( u = \ln(\cos t) \): \[ 2 \ln(\cos t) e^{\ln(\cos t)/2} - 4 e^{\ln(\cos t)/2} = 2 \ln(\cos t) \sqrt{\cos t} - 4 \sqrt{\cos t} \] - At \( u = 0 \): \[ 2(0)(1) - 4(1) = -4 \] Thus, we have: \[ I = -\left( 2 \ln(\cos t) \sqrt{\cos t} - 4 + 4 \right) = -2 \ln(\cos t) \sqrt{\cos t} \] ### Step 6: Take the Limit Now, we need to evaluate: \[ \lim_{t \to \frac{\pi}{2}^-} -2 \ln(\cos t) \sqrt{\cos t} \] As \( t \to \frac{\pi}{2}^- \), \( \cos t \to 0^+ \), thus \( \ln(\cos t) \to -\infty \) and \( \sqrt{\cos t} \to 0 \). The product \( -2 \ln(\cos t) \sqrt{\cos t} \) approaches \( 0 \) because \( \sqrt{\cos t} \) approaches \( 0 \) faster than \( \ln(\cos t) \) approaches \( -\infty \). ### Final Answer Thus, we conclude: \[ \lim_{t \to \frac{\pi}{2}^-} I = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

If piltthetalt 2pi, then sqrt((1+costheta)/(1-costheta)) is equal to

Evaluate: int_0^(pi//2)sqrt(costheta)sin^3theta d theta

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

Prove that int_(0)^(2pi)e^(costheta)cos(sintheta)d theta=2pi .

The value of the integral int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(costheta)+sqrt(sintheta))^5)d theta equals ............

int_0^(pi/2) (a+bsintheta)^3costheta d theta

Solve: cos3theta+2costheta=0

Evaluate: int(1+costheta)/(theta+sintheta)d theta

If tanbeta = costheta*tanalpha , then tan^2(theta/2) is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - 1
  1. The value of int(0)^(1)({2x}-1)({3x}-1)dx, (where {} denotes fraction...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. lim(trarr(pi/2)^(-))int(0)^(t) tanthetasqrt(costheta)ln(costheta)d the...

    Text Solution

    |

  4. Iff(x)={0,w h e r ex=n/(n+1),n=1,2,31,e l s e w h e r e t h e nt h ev...

    Text Solution

    |

  5. If int0^ooe^(-x^2) dx=(sqrtpi)/2 , then int0^ooe^(-ax^2) dx where ...

    Text Solution

    |

  6. If sum(i=1)^(4)(sin^(-1)x(i)+cos^(-1)y(i))=6pi, then \int\limitsum(i=1...

    Text Solution

    |

  7. The tangent, represented by the graph of the function y=f(x), at the p...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  9. int1^2 x^(2x^2+1)(1+2lnx)dx is equal to

    Text Solution

    |

  10. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  11. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  12. If f(x) = int(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt, f(x+pi) is equal to :

    Text Solution

    |

  13. Let f(x) = int(0)^(x)(dt)/(sqrt(1+t^(2))) and g(x) be the inverse of ...

    Text Solution

    |

  14. Let f(x) is differentiable function satisfying 2int(1)^(2)f(tx) dt ...

    Text Solution

    |

  15. Let I(n) = int(0)^(1)x^(n)(tan^(1)x)dx, n in N, then

    Text Solution

    |

  16. If u(n) = int(0)^(pi/2) x^(n)sinxdx, then the value of u(10) + 90 u(8...

    Text Solution

    |

  17. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  18. Let A(1) = int(0)^(x)(int(0)^(u)f(t)dt) dt and A(2) = int(0)^(x)f(u).(...

    Text Solution

    |

  19. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  20. Area bounded by the region consisting of points (x,y) satisfying y le ...

    Text Solution

    |