Home
Class 12
MATHS
If sum(i=1)^(4)(sin^(-1)x(i)+cos^(-1)y(i...

If `sum_(i=1)^(4)(sin^(-1)x_(i)+cos^(-1)y_(i))=6pi`, then `\int\limitsum_(i=1)^(4)x(i)^sum(i=1)^(4)y(i) xln(1+x^(2))(e^(x^(2))/(1+e^(2x)))dx` is euqal to

A

0

B

`e^(4)+e^(-4)`

C

`ln (17/12)`

D

`e^(4)-e^(-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow the steps outlined in the video transcript and break it down into a step-by-step solution. ### Step 1: Understand the Given Condition We are given the equation: \[ \sum_{i=1}^{4} (\sin^{-1} x_i + \cos^{-1} y_i) = 6\pi \] From the properties of the inverse sine and cosine functions, we know: - \(\sin^{-1} x\) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\) - \(\cos^{-1} y\) ranges from \(0\) to \(\pi\) Given that the total is \(6\pi\), we can deduce that: \[ \sin^{-1} x_i = \frac{\pi}{2} \quad \text{and} \quad \cos^{-1} y_i = \pi \] for each \(i\). ### Step 2: Solve for \(x_i\) and \(y_i\) From \(\sin^{-1} x_i = \frac{\pi}{2}\): \[ x_i = \sin\left(\frac{\pi}{2}\right) = 1 \] From \(\cos^{-1} y_i = \pi\): \[ y_i = \cos(\pi) = -1 \] Thus, we have: \[ x_1 = x_2 = x_3 = x_4 = 1 \quad \text{and} \quad y_1 = y_2 = y_3 = y_4 = -1 \] ### Step 3: Calculate the Sums Now we calculate the sums: \[ \sum_{i=1}^{4} x_i = 4 \cdot 1 = 4 \] \[ \sum_{i=1}^{4} y_i = 4 \cdot (-1) = -4 \] ### Step 4: Set Up the Integral We need to evaluate the integral: \[ \int \sum_{i=1}^{4} y_i \sum_{i=1}^{4} x_i \cdot x \ln(1+x^2) \cdot \frac{e^x}{1+e^{2x}} \, dx \] Substituting the sums we found: \[ \int (-4)(4) \cdot x \ln(1+x^2) \cdot \frac{e^x}{1+e^{2x}} \, dx = -16 \int x \ln(1+x^2) \cdot \frac{e^x}{1+e^{2x}} \, dx \] ### Step 5: Check if the Function is Even or Odd To determine the value of the integral, we check if the integrand is even or odd. We replace \(x\) with \(-x\): \[ f(-x) = -x \ln(1+(-x)^2) \cdot \frac{e^{-x}}{1+e^{-2x}} = -x \ln(1+x^2) \cdot \frac{1}{e^x(1+e^{-2x})} \] This shows that: \[ f(-x) = -f(x) \] Thus, the function is odd. ### Step 6: Evaluate the Integral Since the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \] Therefore, we conclude: \[ -16 \int x \ln(1+x^2) \cdot \frac{e^x}{1+e^{2x}} \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int \sum_{i=1}^{4} y_i \sum_{i=1}^{4} x_i \cdot x \ln(1+x^2) \cdot \frac{e^x}{1+e^{2x}} \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

I=int(e^(x))/((e^(x)+1)^(1//4))dx is equal to

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

I=int(1)/(x^(2))sin[(1)/(x)]dx

If sum_(i=1)^10 sin^-1 x_i = 5pi then sum_(i=1)^10 x_i^2 = (A) 0 (B) 5 (C) 10 (D) none of these

If sum_(i=1)^200 sin^-1 x_i=100pi, then sum _(i=1)^200 x_i^2 is equal to

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

The number of real solution of the equation sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i)) = (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i)) lying in the interval (-(1)/(2), (1)/(2)) is ______. (Here, the inverse trigonometric function sin^(-1) x and cos^(-1) x assume values in [-(pi)/(2), (pi)/(2)] and [0, pi] respectively)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - 1
  1. Iff(x)={0,w h e r ex=n/(n+1),n=1,2,31,e l s e w h e r e t h e nt h ev...

    Text Solution

    |

  2. If int0^ooe^(-x^2) dx=(sqrtpi)/2 , then int0^ooe^(-ax^2) dx where ...

    Text Solution

    |

  3. If sum(i=1)^(4)(sin^(-1)x(i)+cos^(-1)y(i))=6pi, then \int\limitsum(i=1...

    Text Solution

    |

  4. The tangent, represented by the graph of the function y=f(x), at the p...

    Text Solution

    |

  5. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  6. int1^2 x^(2x^2+1)(1+2lnx)dx is equal to

    Text Solution

    |

  7. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  8. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  9. If f(x) = int(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt, f(x+pi) is equal to :

    Text Solution

    |

  10. Let f(x) = int(0)^(x)(dt)/(sqrt(1+t^(2))) and g(x) be the inverse of ...

    Text Solution

    |

  11. Let f(x) is differentiable function satisfying 2int(1)^(2)f(tx) dt ...

    Text Solution

    |

  12. Let I(n) = int(0)^(1)x^(n)(tan^(1)x)dx, n in N, then

    Text Solution

    |

  13. If u(n) = int(0)^(pi/2) x^(n)sinxdx, then the value of u(10) + 90 u(8...

    Text Solution

    |

  14. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  15. Let A(1) = int(0)^(x)(int(0)^(u)f(t)dt) dt and A(2) = int(0)^(x)f(u).(...

    Text Solution

    |

  16. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  17. Area bounded by the region consisting of points (x,y) satisfying y le ...

    Text Solution

    |

  18. The area enclosed between the curves y=log(e)(x+e),x=log(e)((1)/(y)), ...

    Text Solution

    |

  19. The area enclosed by the curves x=a sin^(3)t and y= a cos^(2)t is equa...

    Text Solution

    |

  20. The area bounded by the curve f(x)=x+sinx and its inverse function bet...

    Text Solution

    |