Home
Class 12
MATHS
If f(x) = int(0)^(x)(2cos^(2)3t+3sin^(2)...

If `f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt`, `f(x+pi)` is equal to :

A

`f(x) + 2f(x)`

B

`f(x) + 2f(pi/2)`

C

`f(x)+4f(pi/4)`

D

`2f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( f(x + \pi) \) where \[ f(x) = \int_{0}^{x} (2 \cos^2(3t) + 3 \sin^2(3t)) \, dt. \] ### Step 1: Rewrite the integral We can rewrite the integrand using the identities for \( \cos^2 \) and \( \sin^2 \): \[ \cos^2(3t) = \frac{1 + \cos(6t)}{2}, \quad \sin^2(3t) = \frac{1 - \cos(6t)}{2}. \] Substituting these into the integral, we have: \[ f(x) = \int_{0}^{x} \left( 2 \cdot \frac{1 + \cos(6t)}{2} + 3 \cdot \frac{1 - \cos(6t)}{2} \right) dt. \] ### Step 2: Simplify the integrand Now simplify the expression: \[ f(x) = \int_{0}^{x} \left( 1 + \cos(6t) + \frac{3}{2} - \frac{3}{2} \cos(6t) \right) dt. \] Combining the terms gives: \[ f(x) = \int_{0}^{x} \left( \frac{5}{2} - \frac{1}{2} \cos(6t) \right) dt. \] ### Step 3: Integrate term by term Now we can integrate each term: \[ f(x) = \int_{0}^{x} \frac{5}{2} dt - \int_{0}^{x} \frac{1}{2} \cos(6t) dt. \] Calculating the first integral: \[ \int_{0}^{x} \frac{5}{2} dt = \frac{5}{2} x. \] For the second integral, we have: \[ \int_{0}^{x} \frac{1}{2} \cos(6t) dt = \frac{1}{2} \cdot \frac{1}{6} \sin(6t) \bigg|_{0}^{x} = \frac{1}{12} \sin(6x). \] Thus, \[ f(x) = \frac{5}{2} x - \frac{1}{12} \sin(6x). \] ### Step 4: Compute \( f(x + \pi) \) Now we need to find \( f(x + \pi) \): \[ f(x + \pi) = \frac{5}{2} (x + \pi) - \frac{1}{12} \sin(6(x + \pi)). \] Using the property of sine, \( \sin(6(x + \pi)) = -\sin(6x) \), we have: \[ f(x + \pi) = \frac{5}{2} (x + \pi) + \frac{1}{12} \sin(6x). \] ### Step 5: Simplify the expression This simplifies to: \[ f(x + \pi) = \frac{5}{2} x + \frac{5}{2} \pi + \frac{1}{12} \sin(6x). \] ### Conclusion Thus, we have: \[ f(x + \pi) = f(x) + \frac{5}{2} \pi. \] ### Final Answer The final expression for \( f(x + \pi) \) is: \[ f(x + \pi) = f(x) + \frac{5}{2} \pi. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Difference between the greatest and least values opf the function f (x) = int _(0)^(x) (cos ^(2) t + cos t +2) dt in the interval [0, 2pi] is K pi, then K is equal to:

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - 1
  1. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  2. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  3. If f(x) = int(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt, f(x+pi) is equal to :

    Text Solution

    |

  4. Let f(x) = int(0)^(x)(dt)/(sqrt(1+t^(2))) and g(x) be the inverse of ...

    Text Solution

    |

  5. Let f(x) is differentiable function satisfying 2int(1)^(2)f(tx) dt ...

    Text Solution

    |

  6. Let I(n) = int(0)^(1)x^(n)(tan^(1)x)dx, n in N, then

    Text Solution

    |

  7. If u(n) = int(0)^(pi/2) x^(n)sinxdx, then the value of u(10) + 90 u(8...

    Text Solution

    |

  8. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  9. Let A(1) = int(0)^(x)(int(0)^(u)f(t)dt) dt and A(2) = int(0)^(x)f(u).(...

    Text Solution

    |

  10. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  11. Area bounded by the region consisting of points (x,y) satisfying y le ...

    Text Solution

    |

  12. The area enclosed between the curves y=log(e)(x+e),x=log(e)((1)/(y)), ...

    Text Solution

    |

  13. The area enclosed by the curves x=a sin^(3)t and y= a cos^(2)t is equa...

    Text Solution

    |

  14. The area bounded by the curve f(x)=x+sinx and its inverse function bet...

    Text Solution

    |

  15. P(2,2), Q(-2,2) R(-2,-2) & S(2,-2) are vertices of a square. A para...

    Text Solution

    |

  16. The ratio in which the curve y = x^(2) divides the region bounded by ...

    Text Solution

    |

  17. If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi]a n df(x)...

    Text Solution

    |

  18. The area bounded by the curves y=x e^x ,y=x e^(-x) and the line x=1 is...

    Text Solution

    |

  19. Find the area of the region enclosed by the curves y=xlogx and y=2x-2x...

    Text Solution

    |

  20. The area of the region on place bounded by max (|x|,|y|) le 1/2 is

    Text Solution

    |