Home
Class 12
MATHS
Let f(x) is differentiable function sa...

Let `f(x)` is differentiable function satisfying `2int_(1)^(2)f(tx) dt = x+2, AA x in R` Then `int_(1)^(2)(8f(8x)-f(x)-21x) dx` equal to

A

3

B

5

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the information provided: Given that: \[ 2 \int_{1}^{2} f(tx) \, dt = x + 2 \quad \forall x \in \mathbb{R} \] We need to find: \[ \int_{1}^{2} (8f(8x) - f(x) - 21x) \, dx \] ### Step 1: Analyze the given equation From the equation \( 2 \int_{1}^{2} f(tx) \, dt = x + 2 \), we can isolate the integral: \[ \int_{1}^{2} f(tx) \, dt = \frac{x + 2}{2} \] ### Step 2: Substitute \( x = 8 \) Now, substituting \( x = 8 \) into the equation: \[ 2 \int_{1}^{2} f(8t) \, dt = 8 + 2 = 10 \] Thus, \[ \int_{1}^{2} f(8t) \, dt = 5 \] ### Step 3: Substitute \( x = 1 \) Next, substituting \( x = 1 \): \[ 2 \int_{1}^{2} f(t) \, dt = 1 + 2 = 3 \] Thus, \[ \int_{1}^{2} f(t) \, dt = \frac{3}{2} \] ### Step 4: Rewrite the integral we need to evaluate Now we need to evaluate: \[ \int_{1}^{2} (8f(8x) - f(x) - 21x) \, dx \] This can be separated into three integrals: \[ \int_{1}^{2} 8f(8x) \, dx - \int_{1}^{2} f(x) \, dx - \int_{1}^{2} 21x \, dx \] ### Step 5: Evaluate \( \int_{1}^{2} 8f(8x) \, dx \) To evaluate \( \int_{1}^{2} 8f(8x) \, dx \), we can use the substitution \( u = 8x \), which gives \( du = 8dx \) or \( dx = \frac{du}{8} \). The limits change from \( x = 1 \) to \( u = 8 \) and from \( x = 2 \) to \( u = 16 \): \[ \int_{1}^{2} 8f(8x) \, dx = 8 \int_{1}^{2} f(8x) \, dx = \int_{8}^{16} f(u) \frac{du}{8} = \int_{8}^{16} f(u) \, du \] However, we need to evaluate \( \int_{1}^{2} f(8x) \, dx \) directly: Using the earlier result, we have: \[ \int_{1}^{2} f(8x) \, dx = 5 \] Thus, \[ 8 \int_{1}^{2} f(8x) \, dx = 8 \cdot 5 = 40 \] ### Step 6: Evaluate \( \int_{1}^{2} f(x) \, dx \) From earlier, we have: \[ \int_{1}^{2} f(x) \, dx = \frac{3}{2} \] ### Step 7: Evaluate \( \int_{1}^{2} 21x \, dx \) Calculating this integral: \[ \int_{1}^{2} 21x \, dx = 21 \left[ \frac{x^2}{2} \right]_{1}^{2} = 21 \left( \frac{4}{2} - \frac{1}{2} \right) = 21 \cdot \frac{3}{2} = \frac{63}{2} \] ### Step 8: Combine all parts Now we can combine all parts: \[ \int_{1}^{2} (8f(8x) - f(x) - 21x) \, dx = 40 - \frac{3}{2} - \frac{63}{2} \] Calculating: \[ = 40 - \frac{66}{2} = 40 - 33 = 7 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

A function satisfying int_0^1f(tx)dt=nf(x) , where x>0 is

Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R , then

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

Let y=f(x) be a differentiable function AA xin R and satisfies: f(x)=x+int_(0)^(1)x^(2)zf(z)dz+int_(0)^(1)xz^(2)f(z)dz.

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - 1
  1. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  2. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  3. If f(x) = int(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt, f(x+pi) is equal to :

    Text Solution

    |

  4. Let f(x) = int(0)^(x)(dt)/(sqrt(1+t^(2))) and g(x) be the inverse of ...

    Text Solution

    |

  5. Let f(x) is differentiable function satisfying 2int(1)^(2)f(tx) dt ...

    Text Solution

    |

  6. Let I(n) = int(0)^(1)x^(n)(tan^(1)x)dx, n in N, then

    Text Solution

    |

  7. If u(n) = int(0)^(pi/2) x^(n)sinxdx, then the value of u(10) + 90 u(8...

    Text Solution

    |

  8. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  9. Let A(1) = int(0)^(x)(int(0)^(u)f(t)dt) dt and A(2) = int(0)^(x)f(u).(...

    Text Solution

    |

  10. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  11. Area bounded by the region consisting of points (x,y) satisfying y le ...

    Text Solution

    |

  12. The area enclosed between the curves y=log(e)(x+e),x=log(e)((1)/(y)), ...

    Text Solution

    |

  13. The area enclosed by the curves x=a sin^(3)t and y= a cos^(2)t is equa...

    Text Solution

    |

  14. The area bounded by the curve f(x)=x+sinx and its inverse function bet...

    Text Solution

    |

  15. P(2,2), Q(-2,2) R(-2,-2) & S(2,-2) are vertices of a square. A para...

    Text Solution

    |

  16. The ratio in which the curve y = x^(2) divides the region bounded by ...

    Text Solution

    |

  17. If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi]a n df(x)...

    Text Solution

    |

  18. The area bounded by the curves y=x e^x ,y=x e^(-x) and the line x=1 is...

    Text Solution

    |

  19. Find the area of the region enclosed by the curves y=xlogx and y=2x-2x...

    Text Solution

    |

  20. The area of the region on place bounded by max (|x|,|y|) le 1/2 is

    Text Solution

    |