Home
Class 12
MATHS
If u(n) = int(0)^(pi/2) x^(n)sinxdx, th...

If `u_(n) = int_(0)^(pi/2) x^(n)sinxdx`, then the value of `u_(10) + 90 u_(8)` is : (a) `9(pi/2)^(8)` (b) `(pi/2)^(9)` (c) `10 (pi/2)^(9)` (d) `9 (pi/2)^(9)`

A

`9(pi/2)^(8)`

B

`(pi/2)^(9)`

C

`10 (pi/2)^(9)`

D

`9 (pi/2)^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( u_{10} + 90 u_{8} \) where \( u_n = \int_{0}^{\frac{\pi}{2}} x^n \sin x \, dx \). ### Step-by-Step Solution: 1. **Define \( u_n \)**: \[ u_n = \int_{0}^{\frac{\pi}{2}} x^n \sin x \, dx \] 2. **Calculate \( u_{10} \)**: We will use integration by parts to evaluate \( u_{10} \). Let: - \( v = \sin x \) (thus \( dv = \cos x \, dx \)) - \( w = x^{10} \) (thus \( dw = 10 x^{9} \, dx \)) Using integration by parts: \[ u_{10} = \left[ -x^{10} \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 10 x^{9} \cos x \, dx \] Evaluating the boundary term: \[ -\left( \frac{\pi}{2} \right)^{10} \cos\left( \frac{\pi}{2} \right) + 0 = 0 \] Thus, \[ u_{10} = 10 \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx \] 3. **Calculate \( u_{9} \)**: Now we need to evaluate \( \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx \) using integration by parts again: Let: - \( v = \cos x \) (thus \( dv = -\sin x \, dx \)) - \( w = x^{9} \) (thus \( dw = 9 x^{8} \, dx \)) Using integration by parts: \[ \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx = \left[ x^{9} \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 9 x^{8} \sin x \, dx \] Evaluating the boundary term: \[ \left( \frac{\pi}{2} \right)^{9} \sin\left( \frac{\pi}{2} \right) - 0 = \left( \frac{\pi}{2} \right)^{9} \] Thus, \[ \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx = \left( \frac{\pi}{2} \right)^{9} - 9 \int_{0}^{\frac{\pi}{2}} x^{8} \sin x \, dx = \left( \frac{\pi}{2} \right)^{9} - 9 u_{8} \] 4. **Substituting back into \( u_{10} \)**: Substituting back into the equation for \( u_{10} \): \[ u_{10} = 10 \left( \left( \frac{\pi}{2} \right)^{9} - 9 u_{8} \right) = 10 \left( \frac{\pi}{2} \right)^{9} - 90 u_{8} \] 5. **Finding \( u_{10} + 90 u_{8} \)**: Now we can find \( u_{10} + 90 u_{8} \): \[ u_{10} + 90 u_{8} = \left( 10 \left( \frac{\pi}{2} \right)^{9} - 90 u_{8} \right) + 90 u_{8} = 10 \left( \frac{\pi}{2} \right)^{9} \] ### Final Answer: Thus, the value of \( u_{10} + 90 u_{8} \) is: \[ 10 \left( \frac{\pi}{2} \right)^{9} \] The correct option is (c) \( 10 \left( \frac{\pi}{2} \right)^{9} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2) x^(10) sin x" dx" , is then the value of mu_(10)+90mu_(8) , is

Evaluate : int_(0)^(pi//2)cos^(9)xdx

I_10=int_0^(pi/2)x^(10)sinx dx then I_10+90I_8 is (A) 10(pi/2)^6 (B) 10(pi/2)^9 (C) 10(pi/2)^8 (D) 10(pi/2)^7

int_0^1x/((1-x)^(54))dx= a. 9(pi/2)^9 b. 10(pi/2)^9 c. (pi/2)^9 d. 9\ (pi/2)^8

9. int_0^(pi/2)sec^4theta d theta

The value of : tan^(-1) ( tan ""(9pi)/(8) ) is

"y=int_{pi/3}^{pi/2}sinxdx

If int_0^a(dx)/(sqrt(x+a)+sqrt(x))=int_0^(pi/8)(2tantheta)/(sin2theta)d theta then value of ' a ' is a equal to (a >0) (a) 3/4 (b) pi/4 (c) (3pi)/4 (d) 9/(16)

Let I = int _(0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) C _(9))I )=

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - 1
  1. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  2. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  3. If f(x) = int(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt, f(x+pi) is equal to :

    Text Solution

    |

  4. Let f(x) = int(0)^(x)(dt)/(sqrt(1+t^(2))) and g(x) be the inverse of ...

    Text Solution

    |

  5. Let f(x) is differentiable function satisfying 2int(1)^(2)f(tx) dt ...

    Text Solution

    |

  6. Let I(n) = int(0)^(1)x^(n)(tan^(1)x)dx, n in N, then

    Text Solution

    |

  7. If u(n) = int(0)^(pi/2) x^(n)sinxdx, then the value of u(10) + 90 u(8...

    Text Solution

    |

  8. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  9. Let A(1) = int(0)^(x)(int(0)^(u)f(t)dt) dt and A(2) = int(0)^(x)f(u).(...

    Text Solution

    |

  10. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  11. Area bounded by the region consisting of points (x,y) satisfying y le ...

    Text Solution

    |

  12. The area enclosed between the curves y=log(e)(x+e),x=log(e)((1)/(y)), ...

    Text Solution

    |

  13. The area enclosed by the curves x=a sin^(3)t and y= a cos^(2)t is equa...

    Text Solution

    |

  14. The area bounded by the curve f(x)=x+sinx and its inverse function bet...

    Text Solution

    |

  15. P(2,2), Q(-2,2) R(-2,-2) & S(2,-2) are vertices of a square. A para...

    Text Solution

    |

  16. The ratio in which the curve y = x^(2) divides the region bounded by ...

    Text Solution

    |

  17. If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi]a n df(x)...

    Text Solution

    |

  18. The area bounded by the curves y=x e^x ,y=x e^(-x) and the line x=1 is...

    Text Solution

    |

  19. Find the area of the region enclosed by the curves y=xlogx and y=2x-2x...

    Text Solution

    |

  20. The area of the region on place bounded by max (|x|,|y|) le 1/2 is

    Text Solution

    |