Home
Class 12
MATHS
The value of integral int(a)^(b)(|x|)/(x...

The value of integral `int_(a)^(b)(|x|)/(x)dx`, `a lt b` is :

A

`b -a` if `a gt 0`

B

`a-b` if `b lt 0`

C

`b +a` if `a lt 0 lt b`

D

`|b | - |a|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_a^b \frac{|x|}{x} \, dx \) where \( a < b \), we need to consider different cases based on the values of \( a \) and \( b \). ### Step 1: Identify Cases We will analyze three cases based on the signs of \( a \) and \( b \): 1. Case 1: \( a < 0 \) and \( b < 0 \) 2. Case 2: \( a < 0 \) and \( b > 0 \) 3. Case 3: \( a > 0 \) and \( b > 0 \) ### Step 2: Case 1: \( a < 0 \) and \( b < 0 \) In this case, \( |x| = -x \) for \( x < 0 \). Therefore, the integral becomes: \[ \int_a^b \frac{|x|}{x} \, dx = \int_a^b \frac{-x}{x} \, dx = \int_a^b -1 \, dx \] The integral of \(-1\) is: \[ -1 \cdot (b - a) = -(b - a) = a - b \] ### Step 3: Case 2: \( a < 0 \) and \( b > 0 \) Here, we split the integral at 0: \[ \int_a^b \frac{|x|}{x} \, dx = \int_a^0 \frac{|x|}{x} \, dx + \int_0^b \frac{|x|}{x} \, dx \] For \( x < 0 \), \( |x| = -x \): \[ \int_a^0 \frac{-x}{x} \, dx = \int_a^0 -1 \, dx = -1 \cdot (0 - a) = -(-a) = a \] For \( x > 0 \), \( |x| = x \): \[ \int_0^b \frac{x}{x} \, dx = \int_0^b 1 \, dx = 1 \cdot (b - 0) = b \] Combining both parts: \[ \int_a^b \frac{|x|}{x} \, dx = a + b \] ### Step 4: Case 3: \( a > 0 \) and \( b > 0 \) In this case, \( |x| = x \): \[ \int_a^b \frac{|x|}{x} \, dx = \int_a^b \frac{x}{x} \, dx = \int_a^b 1 \, dx = 1 \cdot (b - a) = b - a \] ### Conclusion From the three cases, we have: 1. If \( a < 0 \) and \( b < 0 \): \( a - b \) 2. If \( a < 0 < b \): \( a + b \) 3. If \( a > 0 \) and \( b > 0 \): \( b - a \) Thus, the value of the integral \( \int_a^b \frac{|x|}{x} \, dx \) depends on the signs of \( a \) and \( b \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of integral int_(2)^(4)(dx)/(x) is :-

The value of integral int_(-2)^(4) x[x]dx is

The value of the integral int_(0)^(2)x[x]dx

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(a)^(b) x dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int_-2^2(dx)/(x+1)^3 is

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. int(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

    Text Solution

    |

  2. The value of integral int(a)^(b)(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  3. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  4. The value of integral int0^pi xf(sinx)dx=

    Text Solution

    |

  5. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  6. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  7. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  8. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  9. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  10. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  11. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  12. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  13. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  14. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  15. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  16. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  17. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  18. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  19. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  20. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |