Home
Class 12
MATHS
If I = int(0)^(2pi)sin^(2)xdx, then...

If `I = int_(0)^(2pi)sin^(2)xdx`, then

A

A.`I = 2 underset(0)overset(pi)intsin^(2)xdx`

B

B.`I = 4 underset(0)overset(pi//2)intsin^(2)xdx`

C

C.`I = underset(0)overset(2pi)intcos^(2)xdx`

D

D.`I = 8 underset(0)overset(pi//4)intsin^(2)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \sin^2 x \, dx \), we can use the properties of definite integrals and some trigonometric identities. Here’s the step-by-step solution: ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we can express the integral from \(0\) to \(2\pi\) as: \[ I = \int_{0}^{2\pi} \sin^2 x \, dx = \int_{0}^{2\pi} \sin^2(2\pi - x) \, dx \] Since \(\sin(2\pi - x) = -\sin x\), we have: \[ \sin^2(2\pi - x) = \sin^2 x \] Thus, the integral remains unchanged. ### Step 2: Split the integral We can split the integral from \(0\) to \(2\pi\) into two parts: \[ I = \int_{0}^{\pi} \sin^2 x \, dx + \int_{\pi}^{2\pi} \sin^2 x \, dx \] Using the substitution \(x = 2\pi - t\) for the second integral: \[ \int_{\pi}^{2\pi} \sin^2 x \, dx = \int_{0}^{\pi} \sin^2(2\pi - t) \, (-dt) = \int_{0}^{\pi} \sin^2 t \, dt \] So we can write: \[ I = 2 \int_{0}^{\pi} \sin^2 x \, dx \] ### Step 3: Evaluate \(\int_{0}^{\pi} \sin^2 x \, dx\) To evaluate \(\int_{0}^{\pi} \sin^2 x \, dx\), we can use the identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Thus, \[ \int_{0}^{\pi} \sin^2 x \, dx = \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} \, dx \] This can be split into two integrals: \[ = \frac{1}{2} \int_{0}^{\pi} 1 \, dx - \frac{1}{2} \int_{0}^{\pi} \cos(2x) \, dx \] ### Step 4: Calculate the integrals Calculating the first integral: \[ \int_{0}^{\pi} 1 \, dx = \pi \] Calculating the second integral: \[ \int_{0}^{\pi} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_{0}^{\pi} = \frac{\sin(2\pi)}{2} - \frac{\sin(0)}{2} = 0 \] Putting it all together: \[ \int_{0}^{\pi} \sin^2 x \, dx = \frac{1}{2} \left( \pi - 0 \right) = \frac{\pi}{2} \] ### Step 5: Final calculation of \(I\) Now substituting back into our expression for \(I\): \[ I = 2 \int_{0}^{\pi} \sin^2 x \, dx = 2 \cdot \frac{\pi}{2} = \pi \] ### Final Answer Thus, the value of the integral is: \[ I = \pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^( pi)*sec^(2)xdx

int_(0)^( pi)x sin^(-1)xdx

int_(0)^( pi/2)sec^(2)xdx

int_(0)^( pi/4)sec^(2)xdx

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

(1) int_(0)^( 2pi)cos^(7)xdx

int_(0)^(pi) [2sin x]dx=

int_(0)^( pi/2)x sec^(2)xdx

(i) int_(0)^( pi)x cos^(2)xdx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  2. The value of integral int0^pi xf(sinx)dx=

    Text Solution

    |

  3. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  4. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  5. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  6. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  7. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  8. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  9. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  10. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  11. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  12. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  13. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  14. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  15. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  16. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  17. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  18. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  19. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  20. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |