Home
Class 12
MATHS
Let f : R rarr R be defined as f(x) = in...

Let `f : R rarr R` be defined as `f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2))` then

A

`f(x)` is periodic

B

`f(f(x)) = f(x) AA x in R`

C

`f(1) = f'(1) = pi/2`

D

`f(x)` is unbounded

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined by the integrals: Given: \[ f(x) = \int_{-1}^{e^x} \frac{dt}{1+t^2} + \int_{1}^{e^x} \frac{dt}{1+t^2} \] ### Step 1: Evaluate the integrals The integral \( \int \frac{dt}{1+t^2} \) is known to be \( \tan^{-1}(t) \). Thus, we can evaluate both integrals: 1. For the first integral: \[ \int_{-1}^{e^x} \frac{dt}{1+t^2} = \tan^{-1}(e^x) - \tan^{-1}(-1) \] Since \( \tan^{-1}(-1) = -\frac{\pi}{4} \), we have: \[ \int_{-1}^{e^x} \frac{dt}{1+t^2} = \tan^{-1}(e^x) + \frac{\pi}{4} \] 2. For the second integral: \[ \int_{1}^{e^x} \frac{dt}{1+t^2} = \tan^{-1}(e^x) - \tan^{-1}(1) \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \int_{1}^{e^x} \frac{dt}{1+t^2} = \tan^{-1}(e^x) - \frac{\pi}{4} \] ### Step 2: Combine the results Now, we can combine the results of the two integrals into the function \( f(x) \): \[ f(x) = \left( \tan^{-1}(e^x) + \frac{\pi}{4} \right) + \left( \tan^{-1}(e^x) - \frac{\pi}{4} \right) \] This simplifies to: \[ f(x) = 2 \tan^{-1}(e^x) \] ### Step 3: Analyze the properties of \( f(x) \) 1. **Check if \( f(x) \) is periodic**: A function is periodic if \( f(x + T) = f(x) \) for some period \( T \). Since \( \tan^{-1}(e^x) \) is not periodic, \( f(x) \) is also not periodic. 2. **Check if \( f(f(x)) = f(x) \)**: We can substitute \( f(x) \) into itself: \[ f(f(x)) = f(2 \tan^{-1}(e^x)) = 2 \tan^{-1}(e^{2 \tan^{-1}(e^x)}) \] This does not equal \( f(x) \), so \( f(f(x)) \neq f(x) \). 3. **Evaluate \( f(1) \)**: \[ f(1) = 2 \tan^{-1}(e^1) = 2 \tan^{-1}(e) \] 4. **Find \( f'(x) \)**: Using the chain rule: \[ f'(x) = 2 \cdot \frac{1}{1+(e^x)^2} \cdot e^x = \frac{2e^x}{1+e^{2x}} \] ### Conclusion Thus, we have derived \( f(x) = 2 \tan^{-1}(e^x) \) and analyzed its properties.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0 then,

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) is a real valued function defined by f(x)=x^(2)+x^(2) int_(-1)^(1) tf(t) dt+x^(3) int_(-1)^(1)f(t) dt then which of the following hold (s) good?

Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be definded as : F(x)=int_(1)^(x)t^2 g(t)dt, where g(t) = int_(1)^(t)f(u)du. Then for the function F, the point x=1 is

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  2. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  3. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  4. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  5. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  6. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  7. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  8. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  9. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  10. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  11. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  12. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  13. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  14. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  15. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  16. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  17. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  18. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |

  19. Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S(n) = sum(r=0)^(n)(n...

    Text Solution

    |

  20. A function f(x) satisfying int(0)^(1) f(tx)dt=n f(x), where xgt0, is

    Text Solution

    |