Home
Class 12
MATHS
If f(x) = 2^(|x|) where [x] denotes the...

If `f(x) = 2^(|x|)` where `[x]` denotes the fractional part of x. Then which of the following is true ?

A

f is periodic

B

`underset(0)overset(1)int2^([x])dx = 1/(ln2)`

C

`underset(0)overset(1)int2^([x]) dx = log_(2)e`

D

`underset(0)overset(100)int2^([x]) dx = 100 log_(2) e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = 2^{\{x\}} \), where \( \{x\} \) denotes the fractional part of \( x \). The fractional part of \( x \) is defined as \( \{x\} = x - \lfloor x \rfloor \), which means it takes values in the interval \([0, 1)\). ### Step-by-Step Solution: **Step 1: Determine the range of the function \( f(x) \)** Since the fractional part \( \{x\} \) varies from \( 0 \) to \( 1 \), we can evaluate \( f(x) \): \[ f(x) = 2^{\{x\}} \] When \( \{x\} = 0 \), \( f(x) = 2^0 = 1 \). When \( \{x\} \) approaches \( 1 \), \( f(x) \) approaches \( 2^1 = 2 \). Thus, the range of \( f(x) \) is \( [1, 2) \). **Step 2: Check if the function is periodic** The function \( f(x) \) is periodic with a period of \( 1 \) because \( f(x + 1) = f(x) \) for any integer \( n \): \[ f(x + n) = 2^{\{x + n\}} = 2^{\{x\}} = f(x) \] This confirms that \( f(x) \) is periodic. **Step 3: Evaluate the integral \( \int_0^1 f(x) \, dx \)** We can express the integral as: \[ \int_0^1 f(x) \, dx = \int_0^1 2^{\{x\}} \, dx \] Since \( \{x\} = x \) in the interval \( [0, 1) \), we have: \[ \int_0^1 2^{\{x\}} \, dx = \int_0^1 2^x \, dx \] Calculating this integral: \[ \int 2^x \, dx = \frac{2^x}{\ln(2)} \] Evaluating from \( 0 \) to \( 1 \): \[ \left[ \frac{2^x}{\ln(2)} \right]_0^1 = \frac{2^1}{\ln(2)} - \frac{2^0}{\ln(2)} = \frac{2}{\ln(2)} - \frac{1}{\ln(2)} = \frac{1}{\ln(2)} \] **Step 4: Evaluate the integral \( \int_0^{100} f(x) \, dx \)** We can break this integral into intervals of length \( 1 \): \[ \int_0^{100} f(x) \, dx = \sum_{n=0}^{99} \int_n^{n+1} f(x) \, dx = \sum_{n=0}^{99} \int_0^1 f(x) \, dx \] Since \( f(x) \) is periodic: \[ = 100 \cdot \int_0^1 f(x) \, dx = 100 \cdot \frac{1}{\ln(2)} \] ### Conclusion: Based on the evaluations, we can conclude that: 1. The function \( f(x) \) is periodic. 2. The integral \( \int_0^1 f(x) \, dx = \frac{1}{\ln(2)} \). 3. The integral \( \int_0^{100} f(x) \, dx = \frac{100}{\ln(2)} \). Thus, all the options provided in the question are correct.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fractional part of x. Then, which of the following is/are correct?

If f(x) =[|x|] where [.] denotes the greatest integer function , then which of the following is not true ?

Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}",","if",1 le x le 2):} , where {x} denotes the fractional part function. Which one of the following statements is not correct ?

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

If f(x) ={x} + sin ax (where { } denotes the fractional part function) is periodic, then

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  2. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  3. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  4. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  5. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  6. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  7. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  8. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  9. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  10. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  11. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  12. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  13. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  14. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  15. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  16. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  17. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |

  18. Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S(n) = sum(r=0)^(n)(n...

    Text Solution

    |

  19. A function f(x) satisfying int(0)^(1) f(tx)dt=n f(x), where xgt0, is

    Text Solution

    |

  20. Find the area bounded by y=sin^(-1)x ,y=cos^(-1)x ,and the X-axis.

    Text Solution

    |