Home
Class 12
MATHS
Let I(n) = int(0)^(pi)(sin^(2)(nx))/(si...

Let `I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx`, `n in N` then

A

`I_(n+2) + I_(n) = 2I_(n+1)`

B

`I_(n) = I_(n+1)`

C

`I_(n) = n pi`

D

`I_(1),I_(2), I_(3)"…….."I_(n)` are in Harmonic progression

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\pi} \frac{\sin^2(nx)}{\sin^2(x)} \, dx \) for \( n \in \mathbb{N} \). ### Step 1: Evaluate \( I_1 \) First, we evaluate \( I_1 \): \[ I_1 = \int_0^{\pi} \frac{\sin^2(1 \cdot x)}{\sin^2(x)} \, dx = \int_0^{\pi} \frac{\sin^2(x)}{\sin^2(x)} \, dx \] Since \( \frac{\sin^2(x)}{\sin^2(x)} = 1 \), we have: \[ I_1 = \int_0^{\pi} 1 \, dx = [x]_0^{\pi} = \pi - 0 = \pi \] ### Step 2: Evaluate \( I_2 \) Next, we evaluate \( I_2 \): \[ I_2 = \int_0^{\pi} \frac{\sin^2(2x)}{\sin^2(x)} \, dx \] Using the identity \( \sin(2x) = 2 \sin(x) \cos(x) \), we get: \[ \sin^2(2x) = 4 \sin^2(x) \cos^2(x) \] Thus, \[ I_2 = \int_0^{\pi} \frac{4 \sin^2(x) \cos^2(x)}{\sin^2(x)} \, dx = 4 \int_0^{\pi} \cos^2(x) \, dx \] Now, we can use the identity \( \cos^2(x) = \frac{1 + \cos(2x)}{2} \): \[ I_2 = 4 \int_0^{\pi} \frac{1 + \cos(2x)}{2} \, dx = 2 \int_0^{\pi} (1 + \cos(2x)) \, dx \] Calculating the integral: \[ = 2 \left( \int_0^{\pi} 1 \, dx + \int_0^{\pi} \cos(2x) \, dx \right) \] The first integral is: \[ \int_0^{\pi} 1 \, dx = \pi \] The second integral is: \[ \int_0^{\pi} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_0^{\pi} = \frac{\sin(2\pi)}{2} - \frac{\sin(0)}{2} = 0 \] Thus, \[ I_2 = 2(\pi + 0) = 2\pi \] ### Step 3: Evaluate \( I_3 \) Now, we evaluate \( I_3 \): \[ I_3 = \int_0^{\pi} \frac{\sin^2(3x)}{\sin^2(x)} \, dx \] Using the identity \( \sin(3x) = 3\sin(x) - 4\sin^3(x) \): \[ \sin^2(3x) = (3\sin(x) - 4\sin^3(x))^2 = 9\sin^2(x) - 24\sin^4(x) + 16\sin^6(x) \] Thus, \[ I_3 = \int_0^{\pi} \frac{9\sin^2(x) - 24\sin^4(x) + 16\sin^6(x)}{\sin^2(x)} \, dx \] This simplifies to: \[ I_3 = 9\int_0^{\pi} 1 \, dx - 24\int_0^{\pi} \sin^2(x) \, dx + 16\int_0^{\pi} \sin^4(x) \, dx \] Using the known results: - \( \int_0^{\pi} \sin^2(x) \, dx = \frac{\pi}{2} \) - \( \int_0^{\pi} \sin^4(x) \, dx = \frac{3\pi}{8} \) We find: \[ I_3 = 9\pi - 24 \cdot \frac{\pi}{2} + 16 \cdot \frac{3\pi}{8} \] Calculating this gives: \[ I_3 = 9\pi - 12\pi + 6\pi = 3\pi \] ### Step 4: Generalizing \( I_n \) From the pattern observed, we can conjecture that: \[ I_n = n\pi \] ### Step 5: Mathematical Induction To prove this by induction, we assume it holds for \( n \): \[ I_n = n\pi \] Then for \( n + 1 \): Using the recurrence relation derived from the integral properties, we can show that: \[ I_{n+1} = (n+1)\pi \] Thus, by induction, we conclude: \[ I_n = n\pi \text{ for all } n \in \mathbb{N} \] ### Conclusion The final result is: \[ I_n = n\pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Let I_(n) = int _(0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where n in N U {0}. If l _(1)^(2)+l _(2)^(2) +l_(3)^(2)+ ……. + l _(20)^(2) =mpi^(2), then find the largest prime factor of m.

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

int_(0)^(pi) [2sin x]dx=

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

Let C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) is equal to

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  2. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  3. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  4. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  5. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  6. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  7. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  8. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  9. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  10. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  11. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  12. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  13. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  14. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  15. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  16. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  17. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |

  18. Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S(n) = sum(r=0)^(n)(n...

    Text Solution

    |

  19. A function f(x) satisfying int(0)^(1) f(tx)dt=n f(x), where xgt0, is

    Text Solution

    |

  20. Find the area bounded by y=sin^(-1)x ,y=cos^(-1)x ,and the X-axis.

    Text Solution

    |