Home
Class 12
MATHS
Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (...

Let `f(a,b) = int_(a)^(b)(x^(2)-4x+3)dx, (bgt 0)` then

A

`f(a,3)` is least when `a = 1`

B

`f(a,b)` is an increasing function `AA b ge 4`

C

`f(0,b)` is least for `b = 2`

D

`min{f(a,b)} = -4/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the definite integral \( f(a, b) = \int_{a}^{b} (x^2 - 4x + 3) \, dx \) and analyze its properties based on the limits of integration. Here’s a step-by-step solution: ### Step 1: Set up the integral We start with the function given: \[ f(a, b) = \int_{a}^{b} (x^2 - 4x + 3) \, dx \] ### Step 2: Factor the quadratic expression The quadratic \( x^2 - 4x + 3 \) can be factored: \[ x^2 - 4x + 3 = (x - 1)(x - 3) \] This indicates that the function has roots at \( x = 1 \) and \( x = 3 \). ### Step 3: Find the antiderivative Next, we find the antiderivative of \( x^2 - 4x + 3 \): \[ \int (x^2 - 4x + 3) \, dx = \frac{x^3}{3} - 2x^2 + 3x + C \] ### Step 4: Evaluate the definite integral Now, we evaluate the definite integral from \( a \) to \( b \): \[ f(a, b) = \left[ \frac{x^3}{3} - 2x^2 + 3x \right]_{a}^{b} \] This gives us: \[ f(a, b) = \left( \frac{b^3}{3} - 2b^2 + 3b \right) - \left( \frac{a^3}{3} - 2a^2 + 3a \right) \] ### Step 5: Analyze the function To find the minimum value of \( f(a, 3) \), we can evaluate \( f(1, 3) \): \[ f(1, 3) = \int_{1}^{3} (x^2 - 4x + 3) \, dx \] ### Step 6: Calculate \( f(1, 3) \) Using the antiderivative: \[ f(1, 3) = \left[ \frac{x^3}{3} - 2x^2 + 3x \right]_{1}^{3} \] Calculating at the limits: 1. For \( x = 3 \): \[ \frac{3^3}{3} - 2(3^2) + 3(3) = \frac{27}{3} - 18 + 9 = 9 - 18 + 9 = 0 \] 2. For \( x = 1 \): \[ \frac{1^3}{3} - 2(1^2) + 3(1) = \frac{1}{3} - 2 + 3 = \frac{1}{3} + 1 = \frac{4}{3} \] Thus, \[ f(1, 3) = 0 - \frac{4}{3} = -\frac{4}{3} \] ### Step 7: Conclusion The minimum value of \( f(a, 3) \) occurs when \( a = 1 \), and the minimum value is \( -\frac{4}{3} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Suppose f is continuous on [a,b] & f(a)=f(b)=0 & int_(a)^(b)f^(2)(x)dx=1 then the minimum value of int_(a)^(0)(f^(')(x))^(2)dx int_(a)^(b) x^(2)f^(2)(x)dx is k , then 8k is

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Let int_(a)^(b)f(x)dx=int_(a+c)^(b+c)f(x-c)dx . Then the value of int_(0)^(pi)sin^(2010)x*cos^(2009)xdx is

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

Let f(x) =int_(0)^(x) |xx-2|dx, ge 0 . Then, f'(x) is

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  2. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  3. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  4. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  5. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  6. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  7. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  8. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  9. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  10. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  11. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  12. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  13. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  14. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  15. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  16. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  17. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |

  18. Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S(n) = sum(r=0)^(n)(n...

    Text Solution

    |

  19. A function f(x) satisfying int(0)^(1) f(tx)dt=n f(x), where xgt0, is

    Text Solution

    |

  20. Find the area bounded by y=sin^(-1)x ,y=cos^(-1)x ,and the X-axis.

    Text Solution

    |