Home
Class 12
MATHS
Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+...

Let `T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2))` then

A

`T_(n) gt S_(n) AA n in N`

B

`T_(n) gt pi/4`

C

`S_(n) lt pi/4`

D

`underset(nrarroo)("lim")S_(n) = pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the sums \( T_n \) and \( S_n \) defined as follows: \[ T_n = \sum_{r=1}^{n} \frac{n}{r^2 - 2rn + 2n^2} \] \[ S_n = \sum_{r=0}^{n} \frac{n}{r^2 - 2rn + 2n^2} \] ### Step 1: Simplifying \( T_n \) First, we rewrite \( T_n \): \[ T_n = \sum_{r=1}^{n} \frac{n}{r^2 - 2rn + 2n^2} \] Notice that the denominator can be factored: \[ r^2 - 2rn + 2n^2 = (r - n)^2 + n^2 \] Thus, we can rewrite \( T_n \): \[ T_n = \sum_{r=1}^{n} \frac{n}{(r-n)^2 + n^2} \] ### Step 2: Analyzing \( S_n \) Now, let's analyze \( S_n \): \[ S_n = \sum_{r=0}^{n} \frac{n}{r^2 - 2rn + 2n^2} \] We can separate the first term where \( r = 0 \): \[ S_n = \frac{n}{0^2 - 2 \cdot 0 \cdot n + 2n^2} + \sum_{r=1}^{n} \frac{n}{r^2 - 2rn + 2n^2} \] Calculating the first term: \[ \frac{n}{2n^2} = \frac{1}{2n} \] Thus, we have: \[ S_n = \frac{1}{2n} + T_n \] ### Step 3: Comparing \( T_n \) and \( S_n \) Now we have: \[ S_n = \frac{1}{2n} + T_n \] To compare \( T_n \) and \( S_n \): \[ T_n = S_n - \frac{1}{2n} \] From this, we can see that: \[ T_n = S_n - \frac{1}{2n} < S_n \] since \( \frac{1}{2n} > 0 \). ### Conclusion Thus, we conclude that: \[ T_n < S_n \] ### Final Answer The correct relationship is \( T_n < S_n \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), then AA n in {1,2,3...}:

Let S_(n)=sum_(r=1)^(n)((r^(4)_r^(3)n+r^(2)n^(2)+2n^(4))/(n^(5))) and T_(n)=sum_(r=0)^(n-1)((r^(4)+r^(3)n^(2)+2n^(4))/(n^(5))),n=1,2,3, ……….then

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. Let a function f be even and integrable everywhere and periodic with p...

    Text Solution

    |

  2. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  3. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  4. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  5. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  6. Let I(n) = underset(0)overset(1//2)int(1)/(sqrt(1-x^(n))) dx where n ...

    Text Solution

    |

  7. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  8. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  9. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  10. Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R, then

    Text Solution

    |

  11. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  12. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  13. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  14. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  15. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  16. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  17. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |

  18. Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S(n) = sum(r=0)^(n)(n...

    Text Solution

    |

  19. A function f(x) satisfying int(0)^(1) f(tx)dt=n f(x), where xgt0, is

    Text Solution

    |

  20. Find the area bounded by y=sin^(-1)x ,y=cos^(-1)x ,and the X-axis.

    Text Solution

    |