Home
Class 12
MATHS
Find the Lim(nrarroo) ((""^(3n)C(n))/(""...

Find the `Lim_(nrarroo) ((""^(3n)C_(n))/(""^(2n)C_(n)))^(1/n)`
Where `""^(i)C_(j)` is a binomial coefficient which means `(i.(i-1)"…."(i-j+1))/(j.(j-1)"….."2.1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \frac{{{3n \choose n}}}{{{2n \choose n}}} \right)^{\frac{1}{n}} \), we can follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit: \[ L = \lim_{n \to \infty} \left( \frac{{{3n \choose n}}}{{{2n \choose n}}} \right)^{\frac{1}{n}} \] ### Step 2: Take the Natural Logarithm Taking the natural logarithm on both sides: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \ln \left( \frac{{{3n \choose n}}}{{{2n \choose n}}} \right) \] ### Step 3: Expand the Binomial Coefficients Using the formula for binomial coefficients: \[ {n \choose k} = \frac{n!}{k!(n-k)!} \] we can express the binomial coefficients: \[ {3n \choose n} = \frac{(3n)!}{n!(2n)!}, \quad {2n \choose n} = \frac{(2n)!}{n!n!} \] Thus, \[ \frac{{{3n \choose n}}}{{{2n \choose n}}} = \frac{(3n)! \cdot n! \cdot n!}{(2n)! \cdot n! \cdot (2n)!} = \frac{(3n)!}{(2n)! \cdot n!} \] ### Step 4: Substitute Back Substituting back into the logarithm: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \ln \left( \frac{(3n)!}{(2n)! \cdot n!} \right) \] ### Step 5: Apply Stirling's Approximation Using Stirling's approximation \( n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \): \[ (3n)! \sim \sqrt{6 \pi n} \left( \frac{3n}{e} \right)^{3n}, \quad (2n)! \sim \sqrt{4 \pi n} \left( \frac{2n}{e} \right)^{2n}, \quad n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] ### Step 6: Substitute Stirling's Approximation Substituting these approximations into the logarithm: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \left( \ln \left( \sqrt{6 \pi n} \left( \frac{3n}{e} \right)^{3n} \right) - \ln \left( \sqrt{4 \pi n} \left( \frac{2n}{e} \right)^{2n} \right) - \ln \left( \sqrt{2 \pi n} \left( \frac{n}{e} \right)^{n} \right) \right) \] ### Step 7: Simplify the Logarithm Breaking it down: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \left( \frac{1}{2} \ln(6 \pi n) + 3n \ln(3n) - 3n - \frac{1}{2} \ln(4 \pi n) - 2n \ln(2n) + 2n - \frac{1}{2} \ln(2 \pi n) - n \ln(n) + n \right) \] ### Step 8: Collect Terms Collecting terms and simplifying: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \left( \left(3 \ln 3 - 2 \ln 2 - \ln 2\right)n + \text{lower order terms} \right) \] This simplifies to: \[ \ln L = \lim_{n \to \infty} \left( (3 \ln 3 - 3 \ln 2) + \text{lower order terms} \right) \] ### Step 9: Final Calculation Thus, \[ L = e^{3 \ln 3 - 3 \ln 2} = \frac{27}{8} \] ### Conclusion The final answer is: \[ L = \frac{27}{8} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

If sum_(i=1)^(n-1) ((""^(n)C_(i-1))/(""^(n)C_(i)+""^(n)C_(i-1)))^(3) = (36)/(13) , , then n is equal to

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -High Level Problem
  1. Evaluate : lim(ararr(pi/2)^(-)) int(0)^(a)(cosx)ln(cosx)dx

    Text Solution

    |

  2. Find the value of a(0 lt a lt 1) for which the following definite inte...

    Text Solution

    |

  3. Find the Lim(nrarroo) ((""^(3n)C(n))/(""^(2n)C(n)))^(1/n) Where ""^(...

    Text Solution

    |

  4. int0^oof(a/x+x/a)*(lnx)/x d x=lna*int(a/x+x/a)*(dx)/x

    Text Solution

    |

  5. Evaluate Lim(n->oo)n^2 int(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

    Text Solution

    |

  6. Find f(x) if it satisfies the relation f(x) = e^(x) + int(0)^(1) (x...

    Text Solution

    |

  7. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x+...

    Text Solution

    |

  10. If n gt 1. Evaluate int(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

    Text Solution

    |

  11. Let f(x) be a continuous function AA xepsilonR, except at x=0, such th...

    Text Solution

    |

  12. Given that lim(nrarroo) sum(r=1)^(n) (log(e)(n^(2)+r^(2))-2log(e)n)/n ...

    Text Solution

    |

  13. Given that lim(x to 0)(int(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1,...

    Text Solution

    |

  14. Sketch the graph of cos^(-1)(4x^3-3x) and find the area enclosed betwe...

    Text Solution

    |

  15. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -...

    Text Solution

    |

  16. Let [x] denotes the greatest integer function. Draw a rough sketch of ...

    Text Solution

    |

  17. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  18. Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + ...

    Text Solution

    |

  19. A curve y=f(x) passes through point P(1,1) . The normal to the curv...

    Text Solution

    |

  20. Find the area of the region which contains all points satisfying condi...

    Text Solution

    |