Home
Class 12
MATHS
Evaluate Lim(n->oo)n^2 int(-1/n)^(1/n) (...

`Evaluate Lim_(n->oo)n^2 int_(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} n^2 \int_{-\frac{1}{n}}^{\frac{1}{n}} (2006 \sin x + 2007 \cos x) |x| \, dx, \] we will break down the problem step by step. ### Step 1: Break the Integral into Two Parts We can rewrite the integral as follows: \[ I = \int_{-\frac{1}{n}}^{\frac{1}{n}} (2006 \sin x + 2007 \cos x) |x| \, dx = \int_{-\frac{1}{n}}^{\frac{1}{n}} 2006 \sin x |x| \, dx + \int_{-\frac{1}{n}}^{\frac{1}{n}} 2007 \cos x |x| \, dx. \] ### Step 2: Analyze the First Integral The first integral, \[ \int_{-\frac{1}{n}}^{\frac{1}{n}} 2006 \sin x |x| \, dx, \] is an odd function because \(\sin(-x) = -\sin(x)\) and \(|x|\) is even. Therefore, the integral over a symmetric interval around zero will be zero: \[ \int_{-\frac{1}{n}}^{\frac{1}{n}} 2006 \sin x |x| \, dx = 0. \] ### Step 3: Analyze the Second Integral Now we consider the second integral: \[ \int_{-\frac{1}{n}}^{\frac{1}{n}} 2007 \cos x |x| \, dx. \] This function is even because \(\cos(-x) = \cos(x)\) and \(|x|\) is also even. Therefore, we can simplify it: \[ \int_{-\frac{1}{n}}^{\frac{1}{n}} 2007 \cos x |x| \, dx = 2 \int_{0}^{\frac{1}{n}} 2007 \cos x x \, dx. \] ### Step 4: Substitute Back into the Limit Now substituting back into \(I\): \[ I = 2 \int_{0}^{\frac{1}{n}} 2007 x \cos x \, dx. \] Thus, we have: \[ \lim_{n \to \infty} n^2 I = \lim_{n \to \infty} n^2 \cdot 2 \int_{0}^{\frac{1}{n}} 2007 x \cos x \, dx. \] ### Step 5: Change of Variable Let \(u = nx\), then \(x = \frac{u}{n}\) and \(dx = \frac{du}{n}\). The limits change from \(0\) to \(1\): \[ \int_{0}^{\frac{1}{n}} x \cos x \, dx = \int_{0}^{1} \frac{u}{n} \cos\left(\frac{u}{n}\right) \frac{du}{n} = \frac{1}{n^2} \int_{0}^{1} u \cos\left(\frac{u}{n}\right) \, du. \] ### Step 6: Evaluate the Limit Now substituting this back into the limit: \[ \lim_{n \to \infty} n^2 \cdot 2 \cdot 2007 \cdot \frac{1}{n^2} \int_{0}^{1} u \cos\left(\frac{u}{n}\right) \, du = 4014 \lim_{n \to \infty} \int_{0}^{1} u \cos\left(\frac{u}{n}\right) \, du. \] As \(n \to \infty\), \(\cos\left(\frac{u}{n}\right) \to 1\): \[ \lim_{n \to \infty} \int_{0}^{1} u \cos\left(\frac{u}{n}\right) \, du = \int_{0}^{1} u \, du = \left[\frac{u^2}{2}\right]_{0}^{1} = \frac{1}{2}. \] ### Step 7: Final Calculation Thus, we have: \[ 4014 \cdot \frac{1}{2} = 2007. \] ### Final Answer The final value is \[ \boxed{2007}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(n->oo)(4^n+5^n)^(1/n)

lim_(n->oo) nsin(1/n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

The value of lim_(n->oo) n^(1/n)

Evaluate: lim_(n->oo)sin^n((2pin)/(3n+1)),n in Ndot

lim_(n->oo)sin(x/2^n)/(x/2^n)

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

lim_(n->oo)2^(n-1)sin(a/2^n)

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -High Level Problem
  1. Find the Lim(nrarroo) ((""^(3n)C(n))/(""^(2n)C(n)))^(1/n) Where ""^(...

    Text Solution

    |

  2. int0^oof(a/x+x/a)*(lnx)/x d x=lna*int(a/x+x/a)*(dx)/x

    Text Solution

    |

  3. Evaluate Lim(n->oo)n^2 int(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

    Text Solution

    |

  4. Find f(x) if it satisfies the relation f(x) = e^(x) + int(0)^(1) (x...

    Text Solution

    |

  5. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x+...

    Text Solution

    |

  8. If n gt 1. Evaluate int(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

    Text Solution

    |

  9. Let f(x) be a continuous function AA xepsilonR, except at x=0, such th...

    Text Solution

    |

  10. Given that lim(nrarroo) sum(r=1)^(n) (log(e)(n^(2)+r^(2))-2log(e)n)/n ...

    Text Solution

    |

  11. Given that lim(x to 0)(int(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1,...

    Text Solution

    |

  12. Sketch the graph of cos^(-1)(4x^3-3x) and find the area enclosed betwe...

    Text Solution

    |

  13. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -...

    Text Solution

    |

  14. Let [x] denotes the greatest integer function. Draw a rough sketch of ...

    Text Solution

    |

  15. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  16. Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + ...

    Text Solution

    |

  17. A curve y=f(x) passes through point P(1,1) . The normal to the curv...

    Text Solution

    |

  18. Find the area of the region which contains all points satisfying condi...

    Text Solution

    |

  19. Find the area of the region which is inside the parabola y = - x^(2) +...

    Text Solution

    |

  20. Area bounded by the line y=x, curve y=f(x),(f(x)gtx,AA xgt1) and the l...

    Text Solution

    |