Home
Class 12
MATHS
Given that lim(nrarroo) sum(r=1)^(n) (lo...

Given that `lim_(nrarroo) sum_(r=1)^(n) (log_(e)(n^(2)+r^(2))-2log_(e)n)/n = log_(e)2+pi/2-2`, then
evaluate : ` lim_(nrarroo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+2^(2))^(m) "......"(2n^(2))^(m)]^(1//n)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we will break it down step by step. **Given:** \[ \lim_{n \to \infty} \sum_{r=1}^{n} \left( \log(n^2 + r^2) - 2 \log n \right) / n = \log 2 + \frac{\pi}{2} - 2 \] We need to evaluate: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[ (n^2 + 1^2)^m (n^2 + 2^2)^m \cdots (n^2 + (2n)^2)^m \right]^{\frac{1}{n}} \] **Step 1: Simplifying the expression inside the limit** We can rewrite the expression inside the limit: \[ \frac{1}{n^{2m}} \left[ (n^2 + 1^2)(n^2 + 2^2) \cdots (n^2 + (2n)^2) \right]^{\frac{m}{n}} \] **Step 2: Analyzing the product** The product can be expressed as: \[ (n^2 + 1^2)(n^2 + 2^2) \cdots (n^2 + (2n)^2) = \prod_{r=1}^{2n} (n^2 + r^2) \] **Step 3: Taking the logarithm** To simplify the limit, we can take the logarithm of the product: \[ \log \left( \prod_{r=1}^{2n} (n^2 + r^2) \right) = \sum_{r=1}^{2n} \log(n^2 + r^2) \] **Step 4: Approximating the logarithm** As \( n \to \infty \), we can approximate: \[ \log(n^2 + r^2) \approx \log(n^2) + \log\left(1 + \frac{r^2}{n^2}\right) \approx 2\log n + \frac{r^2}{n^2} - \frac{r^4}{2n^4} + O\left(\frac{1}{n^6}\right) \] **Step 5: Summing the logarithms** Now, we can sum this approximation: \[ \sum_{r=1}^{2n} \log(n^2 + r^2) \approx \sum_{r=1}^{2n} \left( 2 \log n + \frac{r^2}{n^2} \right) \] The first part gives: \[ 2n \log n \] The second part can be approximated using the formula for the sum of squares: \[ \sum_{r=1}^{2n} r^2 = \frac{(2n)(2n + 1)(4n + 1)}{6} \approx \frac{4n^3}{6} = \frac{2n^3}{3} \] Thus, \[ \sum_{r=1}^{2n} \frac{r^2}{n^2} \approx \frac{2n^3/3}{n^2} = \frac{2n}{3} \] **Step 6: Putting it all together** Combining these results: \[ \sum_{r=1}^{2n} \log(n^2 + r^2) \approx 2n \log n + \frac{2n}{3} \] **Step 7: Final limit calculation** Now we can substitute back into our limit: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[ e^{2n \log n + \frac{2n}{3}} \right]^{\frac{m}{n}} = \lim_{n \to \infty} \frac{1}{n^{2m}} e^{2m \log n + \frac{2m}{3}} = \lim_{n \to \infty} \frac{e^{\frac{2m}{3}}}{n^{2m - 2m}} = e^{\frac{2m}{3}} \] Thus, we conclude: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[ (n^2 + 1^2)^m (n^2 + 2^2)^m \cdots (n^2 + (2n)^2)^m \right]^{\frac{1}{n}} = e^{\frac{2m}{3}} \] **Final Answer:** \[ e^{\frac{2m}{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

Given that lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2 , then lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n) is equal to

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

Evaluate : ("lim")_(xrarroo) 1/(1+n^2)+2/(2+n^2)+...+n/(n+n^2)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -High Level Problem
  1. Evaluate Lim(n->oo)n^2 int(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

    Text Solution

    |

  2. Find f(x) if it satisfies the relation f(x) = e^(x) + int(0)^(1) (x...

    Text Solution

    |

  3. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x+...

    Text Solution

    |

  6. If n gt 1. Evaluate int(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

    Text Solution

    |

  7. Let f(x) be a continuous function AA xepsilonR, except at x=0, such th...

    Text Solution

    |

  8. Given that lim(nrarroo) sum(r=1)^(n) (log(e)(n^(2)+r^(2))-2log(e)n)/n ...

    Text Solution

    |

  9. Given that lim(x to 0)(int(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1,...

    Text Solution

    |

  10. Sketch the graph of cos^(-1)(4x^3-3x) and find the area enclosed betwe...

    Text Solution

    |

  11. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -...

    Text Solution

    |

  12. Let [x] denotes the greatest integer function. Draw a rough sketch of ...

    Text Solution

    |

  13. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  14. Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + ...

    Text Solution

    |

  15. A curve y=f(x) passes through point P(1,1) . The normal to the curv...

    Text Solution

    |

  16. Find the area of the region which contains all points satisfying condi...

    Text Solution

    |

  17. Find the area of the region which is inside the parabola y = - x^(2) +...

    Text Solution

    |

  18. Area bounded by the line y=x, curve y=f(x),(f(x)gtx,AA xgt1) and the l...

    Text Solution

    |

  19. Let C(1) and C(2) be the graphs of the functions y=x^(2) and y=2x, res...

    Text Solution

    |

  20. If [4a2 4a 1 4b2 4b 1 4c2 4c 1] [f-1 f1 f2] = [3a2 + 3a 3b2 + 3b 3c2 +...

    Text Solution

    |