Home
Class 12
MATHS
Given that lim(x to 0)(int(0)^(x)(t^(2))...

Given that `lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1`, then find the values of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} \, dt}{bx - \sin x} = 1 \] ### Step 1: Evaluate the limit form As \(x \to 0\), both the numerator and denominator approach 0, resulting in a \(0/0\) indeterminate form. Therefore, we can apply L'Hôpital's rule. ### Step 2: Differentiate the numerator and denominator Using L'Hôpital's rule, we differentiate the numerator and denominator separately. **Numerator:** Using the Fundamental Theorem of Calculus, we differentiate the integral: \[ \frac{d}{dx} \left( \int_0^x \frac{t^2}{\sqrt{a+t}} \, dt \right) = \frac{x^2}{\sqrt{a+x}} \] **Denominator:** The derivative of \(bx - \sin x\) is: \[ \frac{d}{dx}(bx - \sin x) = b - \cos x \] ### Step 3: Rewrite the limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{\frac{x^2}{\sqrt{a+x}}}{b - \cos x} \] ### Step 4: Substitute \(x = 0\) Substituting \(x = 0\) into the limit gives: \[ \frac{0}{b - 1} = 0 \] For the limit to equal 1, the denominator must also approach 0, which means: \[ b - 1 = 0 \implies b = 1 \] ### Step 5: Substitute \(b = 1\) back into the limit Now substituting \(b = 1\) into the limit: \[ \lim_{x \to 0} \frac{\frac{x^2}{\sqrt{a+x}}}{1 - \cos x} \] ### Step 6: Apply L'Hôpital's rule again This again gives a \(0/0\) form as \(x \to 0\). We apply L'Hôpital's rule again. **Numerator:** Differentiating \( \frac{x^2}{\sqrt{a+x}} \): Using the quotient rule: \[ \frac{d}{dx} \left( \frac{x^2}{\sqrt{a+x}} \right) = \frac{2x \sqrt{a+x} - x^2 \cdot \frac{1}{2\sqrt{a+x}}}{a+x} \] **Denominator:** The derivative of \(1 - \cos x\) is: \[ \sin x \] ### Step 7: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{2x \sqrt{a+x} - \frac{x^2}{2\sqrt{a+x}}}{\sin x} \] ### Step 8: Substitute \(x = 0\) again Substituting \(x = 0\): \[ \frac{0}{0} \text{ (again)} \] We apply L'Hôpital's rule once more. ### Step 9: Differentiate again **Numerator:** Differentiate \(2x \sqrt{a+x} - \frac{x^2}{2\sqrt{a+x}}\) again. **Denominator:** The derivative of \(\sin x\) is \(\cos x\). ### Step 10: Evaluate the limit After differentiating, we simplify and evaluate the limit. Eventually, we find: \[ \lim_{x \to 0} \frac{2a}{\frac{3}{2} \cdot 1 \cdot (a)^{1/2} + 1 \cdot (a)^{3/2}} = 1 \] ### Step 11: Solve for \(a\) Setting the limit equal to 1, we solve for \(a\): \[ 2a = 1 \cdot (a)^{3/2} \implies 2 = a^{1/2} \implies a = 4 \] ### Final Values Thus, we find: \[ a = 4, \quad b = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(x to 0)(int_(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

Suppose lim_(x to 0)(int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l , p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0 If p=2 and a=9 and l exists , then the value of l is equal to

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

Let L_(1) = lim_(xrarr0^(+)) (int_(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx) , then identify the correct option(s).

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

Evaluate : Lim_(x to 0)int_(0)^(x^(2)){(sinsqrt(t)) (tansqrt(t))dt}/(x^(4))

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -High Level Problem
  1. Evaluate Lim(n->oo)n^2 int(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

    Text Solution

    |

  2. Find f(x) if it satisfies the relation f(x) = e^(x) + int(0)^(1) (x...

    Text Solution

    |

  3. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x+...

    Text Solution

    |

  6. If n gt 1. Evaluate int(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

    Text Solution

    |

  7. Let f(x) be a continuous function AA xepsilonR, except at x=0, such th...

    Text Solution

    |

  8. Given that lim(nrarroo) sum(r=1)^(n) (log(e)(n^(2)+r^(2))-2log(e)n)/n ...

    Text Solution

    |

  9. Given that lim(x to 0)(int(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1,...

    Text Solution

    |

  10. Sketch the graph of cos^(-1)(4x^3-3x) and find the area enclosed betwe...

    Text Solution

    |

  11. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -...

    Text Solution

    |

  12. Let [x] denotes the greatest integer function. Draw a rough sketch of ...

    Text Solution

    |

  13. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  14. Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + ...

    Text Solution

    |

  15. A curve y=f(x) passes through point P(1,1) . The normal to the curv...

    Text Solution

    |

  16. Find the area of the region which contains all points satisfying condi...

    Text Solution

    |

  17. Find the area of the region which is inside the parabola y = - x^(2) +...

    Text Solution

    |

  18. Area bounded by the line y=x, curve y=f(x),(f(x)gtx,AA xgt1) and the l...

    Text Solution

    |

  19. Let C(1) and C(2) be the graphs of the functions y=x^(2) and y=2x, res...

    Text Solution

    |

  20. If [4a2 4a 1 4b2 4b 1 4c2 4c 1] [f-1 f1 f2] = [3a2 + 3a 3b2 + 3b 3c2 +...

    Text Solution

    |