Home
Class 12
MATHS
The function f(x)=[x]+1/2,x!inI is a/an ...

The function `f(x)=[x]+1/2,x!inI` is a/an (wher [.] denotes greatest integer function)

A

Even

B

odd

C

neither even nor odd

D

even as well as odd

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = [x] + \frac{1}{2} \) (where \([.]\) denotes the greatest integer function) is even, odd, or neither, we will follow these steps: ### Step 1: Understand the Function The function is defined as: \[ f(x) = [x] + \frac{1}{2} \] where \([x]\) is the greatest integer less than or equal to \(x\). This function is defined for \(x\) not belonging to the set of integers. ### Step 2: Check if the Function is Even A function \(f(x)\) is even if: \[ f(-x) = f(x) \quad \text{for all } x \] Let's calculate \(f(-x)\): - For \(x\) not an integer, \(-x\) will also not be an integer. - Thus, we have: \[ f(-x) = [-x] + \frac{1}{2} \] Using the property of the greatest integer function, we know that: \[ [-x] = -[x] - 1 \quad \text{(since } -x \text{ is the negative of } x\text{)} \] Therefore: \[ f(-x) = -[x] - 1 + \frac{1}{2} = -[x] - \frac{1}{2} \] Now, we need to compare \(f(-x)\) with \(f(x)\): \[ f(x) = [x] + \frac{1}{2} \] Clearly, \(f(-x) \neq f(x)\), so the function is not even. ### Step 3: Check if the Function is Odd A function \(f(x)\) is odd if: \[ f(-x) = -f(x) \quad \text{for all } x \] From our previous calculations: \[ f(-x) = -[x] - \frac{1}{2} \] And: \[ -f(x) = -([x] + \frac{1}{2}) = -[x] - \frac{1}{2} \] Since \(f(-x) = -f(x)\), the function satisfies the condition for being odd. ### Conclusion Thus, the function \(f(x) = [x] + \frac{1}{2}\) is an **odd function**.

To determine whether the function \( f(x) = [x] + \frac{1}{2} \) (where \([.]\) denotes the greatest integer function) is even, odd, or neither, we will follow these steps: ### Step 1: Understand the Function The function is defined as: \[ f(x) = [x] + \frac{1}{2} \] where \([x]\) is the greatest integer less than or equal to \(x\). This function is defined for \(x\) not belonging to the set of integers. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The function f( x ) = [x] + sqrt{{ x}} , where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively, is discontinuous at

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Let g(x)=1+x-[x]a n df(x)={-1, x<0;0, if x=0;1, ifx >0 . Then for all ...

    Text Solution

    |

  2. The function f(x)=log((1+sinx)/(1-sinx)) is

    Text Solution

    |

  3. The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest int...

    Text Solution

    |

  4. If the graph of the function y = f(x) is symmetrical about the line x ...

    Text Solution

    |

  5. Fundamental period of f(x)=sec(sin x) is

    Text Solution

    |

  6. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  7. Find the area below the curve y=[sqrt(2+2cos2x)] but above the x-axis ...

    Text Solution

    |

  8. The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

    Text Solution

    |

  9. If F :[1,oo)->[2,oo) is given by f(x)=x+1/x ,t h e n \ f^(-1)(x) equal...

    Text Solution

    |

  10. If f:R to R is an invertible function such that f(x) and f^(-1)(x) are...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):} the range of h^(-1)(x), where...

    Text Solution

    |

  13. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  14. Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

    Text Solution

    |

  15. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  16. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  17. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  18. "cosec"^(-1)(cosx) is real , if :

    Text Solution

    |

  19. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  20. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |