Home
Class 12
MATHS
If f(x)=sin(sqrt([a])x) (where [.] denot...

If `f(x)=sin(sqrt([a])x)` (where [.] denotes the greatest integer function) has `pi` as its fundamental period, then

A

`a=1`

B

`a=9`

C

`aepsilon[1,2)`

D

`aepsilon[4,5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( a \) such that the function \( f(x) = \sin(\sqrt{[a]} x) \) has a fundamental period of \( \pi \). Here, \( [a] \) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understand the Period of the Sine Function**: The fundamental period of the sine function \( \sin(kx) \) is given by: \[ T = \frac{2\pi}{k} \] where \( k \) is the coefficient of \( x \). 2. **Set the Period Equal to \( \pi \)**: For our function, we have: \[ k = \sqrt{[a]} \] Therefore, the period of \( f(x) \) can be expressed as: \[ T = \frac{2\pi}{\sqrt{[a]}} \] Given that the period is \( \pi \), we can set up the equation: \[ \frac{2\pi}{\sqrt{[a]}} = \pi \] 3. **Simplify the Equation**: Dividing both sides by \( \pi \) (assuming \( \pi \neq 0 \)): \[ \frac{2}{\sqrt{[a]}} = 1 \] 4. **Solve for \( \sqrt{[a]} \)**: Multiplying both sides by \( \sqrt{[a]} \): \[ 2 = \sqrt{[a]} \] 5. **Square Both Sides**: Squaring both sides gives: \[ 4 = [a] \] 6. **Determine the Range of \( a \)**: The greatest integer function \( [a] = 4 \) implies that \( a \) must be in the range: \[ 4 \leq a < 5 \] ### Final Answer: Thus, the value of \( a \) for which the function \( f(x) = \sin(\sqrt{[a]} x) \) has a fundamental period of \( \pi \) is: \[ a \in [4, 5) \]

To solve the problem, we need to determine the value of \( a \) such that the function \( f(x) = \sin(\sqrt{[a]} x) \) has a fundamental period of \( \pi \). Here, \( [a] \) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understand the Period of the Sine Function**: The fundamental period of the sine function \( \sin(kx) \) is given by: \[ T = \frac{2\pi}{k} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If the graph of the function y = f(x) is symmetrical about the line x ...

    Text Solution

    |

  2. Fundamental period of f(x)=sec(sin x) is

    Text Solution

    |

  3. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  4. Find the area below the curve y=[sqrt(2+2cos2x)] but above the x-axis ...

    Text Solution

    |

  5. The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

    Text Solution

    |

  6. If F :[1,oo)->[2,oo) is given by f(x)=x+1/x ,t h e n \ f^(-1)(x) equal...

    Text Solution

    |

  7. If f:R to R is an invertible function such that f(x) and f^(-1)(x) are...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):} the range of h^(-1)(x), where...

    Text Solution

    |

  10. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  11. Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

    Text Solution

    |

  12. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  13. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  14. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  15. "cosec"^(-1)(cosx) is real , if :

    Text Solution

    |

  16. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  17. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  18. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  19. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  20. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |