Home
Class 12
MATHS
Find the area below the curve y=[sqrt(2+...

Find the area below the curve `y=[sqrt(2+2cos2x)]` but above the x-axis in `[-3pi,6pi]` is (where [.] denotes the greatest integer function)

A

a.`2pi` square units

B

b.`pi`square units

C

c.`6pi` square units

D

d.`8pi` square units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area below the curve \( y = \sqrt{2 + 2 \cos(2x)} \) but above the x-axis in the interval \([-3\pi, 6\pi]\), we will follow these steps: ### Step 1: Simplify the function We start by simplifying the function \( y = \sqrt{2 + 2 \cos(2x)} \). Using the identity \( 1 + \cos(2x) = 2 \cos^2(x) \), we can rewrite the function as: \[ y = \sqrt{2(1 + \cos(2x))} = \sqrt{2 \cdot 2 \cos^2(x)} = 2 |\cos(x)| \] ### Step 2: Determine the intervals where the function is positive The function \( y = 2 |\cos(x)| \) is positive wherever \( \cos(x) \) is non-negative. The cosine function is non-negative in the intervals: - \( [2k\pi, (2k + 1)\pi] \) for integer \( k \) ### Step 3: Find the number of complete cycles in the interval \([-3\pi, 6\pi]\) The period of \( \cos(x) \) is \( 2\pi \). To find the number of complete cycles in the interval \([-3\pi, 6\pi]\): - The length of the interval is \( 6\pi - (-3\pi) = 9\pi \). - The number of complete cycles is \( \frac{9\pi}{2\pi} = 4.5 \), meaning there are 4 complete cycles and an additional half cycle. ### Step 4: Calculate the area for one complete cycle The area under one complete cycle of \( y = 2 |\cos(x)| \) from \( 0 \) to \( \pi \) is given by: \[ \text{Area} = \int_0^{\pi} 2 \cos(x) \, dx \] Calculating this integral: \[ \int_0^{\pi} 2 \cos(x) \, dx = 2 \left[ \sin(x) \right]_0^{\pi} = 2 (0 - 0) = 0 \] However, we need to consider the area from \( 0 \) to \( \frac{\pi}{2} \) and from \( \frac{\pi}{2} \) to \( \pi \): \[ \text{Area from } 0 \text{ to } \frac{\pi}{2} = \int_0^{\frac{\pi}{2}} 2 \cos(x) \, dx = 2 [\sin(x)]_0^{\frac{\pi}{2}} = 2(1 - 0) = 2 \] \[ \text{Area from } \frac{\pi}{2} \text{ to } \pi = \int_{\frac{\pi}{2}}^{\pi} 2 (-\cos(x)) \, dx = 2 [-\sin(x)]_{\frac{\pi}{2}}^{\pi} = 2(0 - (-1)) = 2 \] Thus, the total area for one complete cycle is: \[ \text{Total Area} = 2 + 2 = 4 \] ### Step 5: Calculate the total area for the interval \([-3\pi, 6\pi]\) Since there are 4 complete cycles and a half cycle, we need to calculate the area for the half cycle from \( 0 \) to \( \frac{\pi}{2} \): \[ \text{Area for half cycle} = 2 \] Thus, the total area is: \[ \text{Total Area} = 4 \times 4 + 2 = 16 + 2 = 18 \] ### Step 6: Apply the greatest integer function Finally, we apply the greatest integer function to the total area: \[ \lfloor 18 \rfloor = 18 \] ### Conclusion The area below the curve \( y = \sqrt{2 + 2 \cos(2x)} \) but above the x-axis in the interval \([-3\pi, 6\pi]\) is \( \lfloor 18 \rfloor = 18 \).

To find the area below the curve \( y = \sqrt{2 + 2 \cos(2x)} \) but above the x-axis in the interval \([-3\pi, 6\pi]\), we will follow these steps: ### Step 1: Simplify the function We start by simplifying the function \( y = \sqrt{2 + 2 \cos(2x)} \). Using the identity \( 1 + \cos(2x) = 2 \cos^2(x) \), we can rewrite the function as: \[ y = \sqrt{2(1 + \cos(2x))} = \sqrt{2 \cdot 2 \cos^2(x)} = 2 |\cos(x)| ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Sketch the curves (i) y=sqrt(x-[x]) (where [.] denotes the greatest integer function).

Draw the graph of [y] = sin x, x in [0,2pi] where [*] denotes the greatest integer function

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

Area bounded by the curve [|x|] + [|y|] = 3, where [.] denotes the greatest integer function

Draw the graph of [y] = cos x, x in [0, 2pi], where [*] denotes the greatest integer function.

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Fundamental period of f(x)=sec(sin x) is

    Text Solution

    |

  2. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  3. Find the area below the curve y=[sqrt(2+2cos2x)] but above the x-axis ...

    Text Solution

    |

  4. The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

    Text Solution

    |

  5. If F :[1,oo)->[2,oo) is given by f(x)=x+1/x ,t h e n \ f^(-1)(x) equal...

    Text Solution

    |

  6. If f:R to R is an invertible function such that f(x) and f^(-1)(x) are...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):} the range of h^(-1)(x), where...

    Text Solution

    |

  9. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  10. Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

    Text Solution

    |

  11. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  12. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  13. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  14. "cosec"^(-1)(cosx) is real , if :

    Text Solution

    |

  15. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  16. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  17. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  18. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  19. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  20. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |