Home
Class 12
MATHS
Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):}...

Let `f(x)={(x,-1lexle1),(x^(2),1ltxle2):}` the range of `h^(-1)(x)`, where `h(x)=fof(x)` is (A) `[-1,sqrt(2)]` (B) `[-1,2]` (C) `[-1,4]` (D) `[-2,2]`

A

`[-1,sqrt(2)]`

B

`[-1,2]`

C

`[-1,4]`

D

`[-2,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \( h^{-1}(x) \) where \( h(x) = f(f(x)) \) and \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} x & \text{for } -1 \leq x \leq 1 \\ x^2 & \text{for } 1 < x \leq 2 \end{cases} \] ### Step 1: Determine the range of \( f(x) \) 1. For \( -1 \leq x \leq 1 \), \( f(x) = x \). Thus, the range of \( f(x) \) in this interval is \([-1, 1]\). 2. For \( 1 < x \leq 2 \), \( f(x) = x^2 \). The minimum value occurs at \( x = 1 \) (where \( f(1) = 1^2 = 1 \)) and the maximum value occurs at \( x = 2 \) (where \( f(2) = 2^2 = 4 \)). Thus, the range of \( f(x) \) in this interval is \((1, 4]\). Combining both ranges, the overall range of \( f(x) \) is: \[ [-1, 1] \cup (1, 4] = [-1, 4] \] ### Step 2: Determine \( h(x) = f(f(x)) \) Next, we need to evaluate \( h(x) = f(f(x)) \) for different intervals of \( x \). 1. **For \( -1 \leq x \leq 1 \)**: - Here, \( f(x) = x \). - Therefore, \( h(x) = f(f(x)) = f(x) = x \). - The range of \( h(x) \) in this interval is \([-1, 1]\). 2. **For \( 1 < x \leq 2 \)**: - Here, \( f(x) = x^2 \). - Since \( x \) in this interval ranges from just above 1 to 2, \( f(x) \) will range from just above 1 to 4. - We need to evaluate \( f(f(x)) = f(x^2) \): - \( x^2 \) will be in the interval \((1, 4]\). - For \( 1 < x^2 \leq 4 \), we need to consider two cases: - If \( 1 < x^2 \leq 1 \) (which is not possible), we would use \( f(x^2) = x^2 \). - If \( 1 < x^2 \leq 4 \), we have \( f(x^2) = (x^2)^2 = x^4 \). - The minimum value of \( x^4 \) occurs at \( x = \sqrt{1} = 1 \) (where \( f(1) = 1^4 = 1 \)) and the maximum value occurs at \( x = 2 \) (where \( f(2) = 2^4 = 16 \)). - Thus, the range of \( h(x) \) in this interval is \((1, 16]\). ### Step 3: Combine the ranges from both intervals Combining the ranges from both intervals, we have: - From \( -1 \leq x \leq 1 \): Range is \([-1, 1]\) - From \( 1 < x \leq 2 \): Range is \((1, 16]\) Thus, the overall range of \( h(x) \) is: \[ [-1, 16] \] ### Step 4: Find the range of \( h^{-1}(x) \) Since \( h(x) \) maps to the interval \([-1, 16]\), the range of \( h^{-1}(x) \) will be the same as the domain of \( h(x) \): - The minimum value of \( h^{-1}(x) \) occurs at \( -1 \) (where \( h(-1) = -1 \)). - The maximum value of \( h^{-1}(x) \) occurs at \( 16 \) (where \( h(2) = 16 \)). Thus, the range of \( h^{-1}(x) \) is: \[ [-1, 4] \] ### Conclusion The correct answer is: **(C) \([-1, 4]\)**

To find the range of \( h^{-1}(x) \) where \( h(x) = f(f(x)) \) and \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} x & \text{for } -1 \leq x \leq 1 \\ x^2 & \text{for } 1 < x \leq 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

Let f(x) ={{:(1+x,0lexle2),(3-x,2ltxle3):} then discuss the continuity of g(x) =f(f(x)).

If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity fo f(f(x)) is [0,2] is,

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} ,f'(0)+f'(2)=e then the value of a is:

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If f:R to R is an invertible function such that f(x) and f^(-1)(x) are...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let f(x)={(x,-1lexle1),(x^(2),1ltxle2):} the range of h^(-1)(x), where...

    Text Solution

    |

  4. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  5. Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

    Text Solution

    |

  6. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  7. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  8. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  9. "cosec"^(-1)(cosx) is real , if :

    Text Solution

    |

  10. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  11. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  12. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  13. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  14. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  15. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  16. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  17. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  18. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  19. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  20. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |