Home
Class 12
MATHS
The function f(x)=cot^(-1)sqrt((x+3)x)+c...

The function `f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1)` is defined on the set `S`, where `S` is equal to (A) `{0,3}` (B) `(0,3)` (C) `{0,-3}` (D) `[-3,0]`

A

`{0,3}`

B

`(0,3)`

C

`{0,-3}`

D

`[-3,0]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the set \( S \) on which the function \( f(x) = \cot^{-1} \sqrt{(x+3)x} + \cos^{-1} \sqrt{x^2 + 3x + 1} \) is defined, we need to analyze the domains of both components of the function. ### Step 1: Analyze \( \cot^{-1} \sqrt{(x+3)x} \) 1. The expression under the square root, \( (x+3)x \), must be non-negative: \[ (x+3)x \geq 0 \] This can be factored as: \[ x(x + 3) \geq 0 \] 2. The roots of the equation \( x(x + 3) = 0 \) are \( x = 0 \) and \( x = -3 \). 3. We can analyze the sign of \( x(x + 3) \) using a number line: - For \( x < -3 \): both factors are negative, so the product is positive. - For \( -3 < x < 0 \): \( x \) is negative and \( x + 3 \) is positive, so the product is negative. - For \( x > 0 \): both factors are positive, so the product is positive. 4. Therefore, the intervals where \( x(x + 3) \geq 0 \) are: \[ (-\infty, -3] \cup [0, \infty) \] ### Step 2: Analyze \( \cos^{-1} \sqrt{x^2 + 3x + 1} \) 1. The expression \( \sqrt{x^2 + 3x + 1} \) must be between 0 and 1 (inclusive): \[ 0 \leq \sqrt{x^2 + 3x + 1} \leq 1 \] 2. Squaring the inequality gives: \[ 0 \leq x^2 + 3x + 1 \leq 1 \] 3. This leads to two inequalities: - \( x^2 + 3x + 1 \geq 0 \) - \( x^2 + 3x + 1 \leq 1 \) 4. For \( x^2 + 3x + 1 \geq 0 \): - The roots are found using the quadratic formula: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-3 \pm \sqrt{5}}{2} \] - The quadratic opens upwards, so it is non-negative outside the roots. 5. For \( x^2 + 3x + 1 \leq 1 \): - Rearranging gives: \[ x^2 + 3x \leq 0 \] - Factoring gives: \[ x(x + 3) \leq 0 \] - The roots are again \( x = 0 \) and \( x = -3 \). 6. The intervals where \( x(x + 3) \leq 0 \) are: \[ [-3, 0] \] ### Step 3: Find the intersection of both conditions 1. The first condition gives us: \[ (-\infty, -3] \cup [0, \infty) \] 2. The second condition gives us: \[ [-3, 0] \] 3. The intersection of these two sets is: \[ \{-3, 0\} \] ### Conclusion Thus, the function \( f(x) \) is defined on the set \( S = \{-3, 0\} \). ### Final Answer The correct option is (C) \(\{0, -3\}\).

To determine the set \( S \) on which the function \( f(x) = \cot^{-1} \sqrt{(x+3)x} + \cos^{-1} \sqrt{x^2 + 3x + 1} \) is defined, we need to analyze the domains of both components of the function. ### Step 1: Analyze \( \cot^{-1} \sqrt{(x+3)x} \) 1. The expression under the square root, \( (x+3)x \), must be non-negative: \[ (x+3)x \geq 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1) is defined on the set S, where S is equal to

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal to

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

If function f(x) = (sqrt(1+x) - root(3)(1+x))/(x) is continuous function at x = 0, then f(0) is equal to

sqrt((3x)/(x+1))+sqrt((x+1)/(3x))=2," when "x ne 0and x ne -1

lim _(x -> 0) (sqrt(1+x^3) - sqrt(1-x^3))/(x^3)

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

The maximum value of the function f(x)=(1+x)^(0.3)/(1+x^(0.3)) in [0,1] is

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Statement -1 All points of intersection of y=f(x) and y=f^(-1)(x) lies...

    Text Solution

    |

  2. Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

    Text Solution

    |

  3. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  4. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  5. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  6. "cosec"^(-1)(cosx) is real , if :

    Text Solution

    |

  7. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  8. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  9. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  10. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  11. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  12. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  13. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  14. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  15. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  16. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  17. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |

  18. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  19. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  20. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |