Home
Class 12
MATHS
Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec...

Domain of `f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x` is

A

`[-1,1]`

B

`R`

C

`(-oo,-1]uu[1,oo)`

D

`{-1,1}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \cos^{-1}x + \cot^{-1}x + \csc^{-1}x \), we need to determine the individual domains of each of the component functions and then find the intersection of these domains. ### Step-by-step Solution: 1. **Identify the domains of each function:** - The domain of \( \cos^{-1}x \) is \( x \in [-1, 1] \). - The domain of \( \cot^{-1}x \) is \( x \in \mathbb{R} \) (all real numbers). - The domain of \( \csc^{-1}x \) is \( x \in (-\infty, -1] \cup [1, \infty) \) (all real numbers except the interval \((-1, 1)\)). 2. **Combine the domains:** - We need to find the intersection of the three domains: - For \( \cos^{-1}x \): \( [-1, 1] \) - For \( \cot^{-1}x \): \( \mathbb{R} \) - For \( \csc^{-1}x \): \( (-\infty, -1] \cup [1, \infty) \) 3. **Determine the intersection:** - The intersection of \( [-1, 1] \) and \( (-\infty, -1] \cup [1, \infty) \) is: - The only points that are common in both sets are \( -1 \) and \( 1 \). - Therefore, the intersection is \( \{-1, 1\} \). 4. **Final domain:** - Since \( \cot^{-1}x \) is defined for all real numbers, it does not restrict the intersection further. - Thus, the domain of \( f(x) \) is \( x = -1 \) and \( x = 1 \). ### Conclusion: The domain of the function \( f(x) = \cos^{-1}x + \cot^{-1}x + \csc^{-1}x \) is: \[ \text{Domain of } f(x) = \{-1, 1\} \]

To find the domain of the function \( f(x) = \cos^{-1}x + \cot^{-1}x + \csc^{-1}x \), we need to determine the individual domains of each of the component functions and then find the intersection of these domains. ### Step-by-step Solution: 1. **Identify the domains of each function:** - The domain of \( \cos^{-1}x \) is \( x \in [-1, 1] \). - The domain of \( \cot^{-1}x \) is \( x \in \mathbb{R} \) (all real numbers). - The domain of \( \csc^{-1}x \) is \( x \in (-\infty, -1] \cup [1, \infty) \) (all real numbers except the interval \((-1, 1)\)). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Find the domain of f(x)=cos^(-1)x+cosx .

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

Find domain for, f(x)=cos^(-1)[x] .

Draw the graph of y=cot^(-1)x+sec^(-1)x+cosec^(-1)x .

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

Find the range of f(x) = cos^(-1) x + cot^(-1) x

Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^2+3x+1) is_______

Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^2+3x+1) is_______

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

    Text Solution

    |

  2. The function f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^(2)+3x+1) is def...

    Text Solution

    |

  3. Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

    Text Solution

    |

  4. Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (pi/4,(3pi)/4) (b) [pi...

    Text Solution

    |

  5. "cosec"^(-1)(cosx) is real , if :

    Text Solution

    |

  6. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  7. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  8. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  9. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  10. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  11. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  12. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  13. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  14. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  15. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  16. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |

  17. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  18. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  19. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  20. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |