Home
Class 12
MATHS
Number of solutions of the equation cot^...

Number of solutions of the equation `cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2` is:

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}(\sqrt{4 - x^2}) + \cos^{-1}(x^2 - 5) = \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Determine the domain of the functions involved 1. **For \( \cot^{-1}(\sqrt{4 - x^2}) \)**: - The expression \( \sqrt{4 - x^2} \) is defined when \( 4 - x^2 \geq 0 \). - This implies \( x^2 \leq 4 \) or \( -2 \leq x \leq 2 \). 2. **For \( \cos^{-1}(x^2 - 5) \)**: - The argument \( x^2 - 5 \) must lie within the range \([-1, 1]\). - Thus, we have: \[ -1 \leq x^2 - 5 \leq 1 \] - This can be split into two inequalities: 1. \( x^2 - 5 \geq -1 \) gives \( x^2 \geq 4 \) or \( |x| \geq 2 \). 2. \( x^2 - 5 \leq 1 \) gives \( x^2 \leq 6 \) or \( |x| \leq \sqrt{6} \). ### Step 2: Combine the domains - From \( -2 \leq x \leq 2 \) and \( |x| \geq 2 \) (which gives \( x \leq -2 \) or \( x \geq 2 \)), we find that the valid values of \( x \) are: - \( x = -2 \) - \( x = 2 \) ### Step 3: Evaluate the equation at the boundary points 1. **For \( x = -2 \)**: - Calculate \( \cot^{-1}(\sqrt{4 - (-2)^2}) = \cot^{-1}(0) = \frac{\pi}{2} \). - Calculate \( \cos^{-1}((-2)^2 - 5) = \cos^{-1}(4 - 5) = \cos^{-1}(-1) = \pi \). - Thus, \( \frac{\pi}{2} + \pi = \frac{3\pi}{2} \). 2. **For \( x = 2 \)**: - Calculate \( \cot^{-1}(\sqrt{4 - 2^2}) = \cot^{-1}(0) = \frac{\pi}{2} \). - Calculate \( \cos^{-1}(2^2 - 5) = \cos^{-1}(4 - 5) = \cos^{-1}(-1) = \pi \). - Thus, \( \frac{\pi}{2} + \pi = \frac{3\pi}{2} \). ### Conclusion Both \( x = -2 \) and \( x = 2 \) satisfy the equation. Therefore, the number of solutions to the equation is: \[ \boxed{2} \]

To solve the equation \( \cot^{-1}(\sqrt{4 - x^2}) + \cos^{-1}(x^2 - 5) = \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Determine the domain of the functions involved 1. **For \( \cot^{-1}(\sqrt{4 - x^2}) \)**: - The expression \( \sqrt{4 - x^2} \) is defined when \( 4 - x^2 \geq 0 \). - This implies \( x^2 \leq 4 \) or \( -2 \leq x \leq 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2)-4x^(2)) is

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  2. The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=...

    Text Solution

    |

  3. Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(...

    Text Solution

    |

  4. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  5. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  6. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  7. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  8. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  9. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  10. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  11. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |

  12. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  13. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  14. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  15. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  16. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  17. If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal t...

    Text Solution

    |

  18. For real numbers x and y , define x\ R\ y iff x-y+sqrt(2) is an irrati...

    Text Solution

    |

  19. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  20. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |