Home
Class 12
MATHS
lf x >=0 and theta = sin^(-1)x + cos^(-1...

lf `x >=0` and `theta = sin^(-1)x + cos^(-1)x-tan^(-1) x`, then

A

`(pi)/2le theta le (3pi)/4`

B

`0le theta le (pi)/4`

C

`0le theta lt (pi)/2`

D

`(pi)/4 le theta le (pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression for \( \theta \) given by: \[ \theta = \sin^{-1}(x) + \cos^{-1}(x) - \tan^{-1}(x) \] where \( x \geq 0 \). ### Step 1: Determine the Range of \( x \) Since \( x \) is given to be greater than or equal to 0, we also need to consider the domains of the inverse trigonometric functions involved: - The domain of \( \sin^{-1}(x) \) is \( x \in [0, 1] \). - The domain of \( \cos^{-1}(x) \) is \( x \in [0, 1] \). - The domain of \( \tan^{-1}(x) \) is \( x \in [0, \infty) \). Thus, combining these, we conclude that \( x \) must lie in the interval: \[ x \in [0, 1] \] ### Step 2: Simplify \( \theta \) Using the identity: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] we can rewrite \( \theta \): \[ \theta = \frac{\pi}{2} - \tan^{-1}(x) \] ### Step 3: Analyze the Behavior of \( \tan^{-1}(x) \) Now, we need to find the maximum and minimum values of \( \theta \) as \( x \) varies from 0 to 1. - When \( x = 0 \): \[ \tan^{-1}(0) = 0 \quad \Rightarrow \quad \theta = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] - When \( x = 1 \): \[ \tan^{-1}(1) = \frac{\pi}{4} \quad \Rightarrow \quad \theta = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Step 4: Determine the Range of \( \theta \) From the above calculations, we find that: - The maximum value of \( \theta \) is \( \frac{\pi}{2} \) (when \( x = 0 \)). - The minimum value of \( \theta \) is \( \frac{\pi}{4} \) (when \( x = 1 \)). Thus, as \( x \) varies from 0 to 1, \( \theta \) varies from \( \frac{\pi}{4} \) to \( \frac{\pi}{2} \). ### Conclusion Therefore, the range of \( \theta \) is: \[ \theta \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \] This means that the correct option is: **Option 3: \( \theta \) lies between \( \frac{\pi}{4} \) to \( \frac{\pi}{2} \)**.

To solve the problem, we need to analyze the expression for \( \theta \) given by: \[ \theta = \sin^{-1}(x) + \cos^{-1}(x) - \tan^{-1}(x) \] where \( x \geq 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b , then:

Draw the graph of y=tan^(-1)x+cos^(-1)x+sin^(-1)x .

Prove that : sin cot^(-1) tan cos^(-1) x=x

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

"If"sin{cot^(-1)(x+1)}=cos(tan^(-1)x), then find x.

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Statement -1: If a is twice the tangent of the arithmetic mean of sin^(-1)x and cos^(-1) x , b the geometric mean of tanx and cot x then x^(2)-ax+b=0rarr x=1 statement-2: tan((sin^(-1)x+cos^(-1)x)/(2))=1

If sin{cot^-1(x+1)}="cos"(tan^(-1)x), then find x

If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0 , then x is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If pilexle2pi, then cos^(-1)(cosx) is equal to

    Text Solution

    |

  2. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  3. lf x >=0 and theta = sin^(-1)x + cos^(-1)x-tan^(-1) x, then

    Text Solution

    |

  4. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  5. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  6. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  7. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  8. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |

  9. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  10. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  11. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  12. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  13. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  14. If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal t...

    Text Solution

    |

  15. For real numbers x and y , define x\ R\ y iff x-y+sqrt(2) is an irrati...

    Text Solution

    |

  16. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  17. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  18. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  19. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  20. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |