Home
Class 12
MATHS
Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(...

Statement 1: `tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11`.
Statement -2 `:tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta`

A

Statement -1 is true, Statement -2 is true and Statement -2 is correct explanation for Statement -1

B

Statement -1 is true, Statement -2 is true and Statement -2 is not correct explanation for Statement -1

C

Statement -1 is true, Statement -2 is false

D

Statement -1 is false Statement -2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given question, we need to analyze both statements step by step. ### Statement 1: We need to prove that: \[ \tan^2(\sec^{-1}(2)) + \cot^2(\csc^{-1}(3)) = 11 \] **Step 1: Calculate \(\tan^2(\sec^{-1}(2))\)** Let \( x = \sec^{-1}(2) \). By definition, this means: \[ \sec(x) = 2 \] Using the identity \(\sec^2(x) = 1 + \tan^2(x)\), we can derive: \[ \tan^2(x) = \sec^2(x) - 1 = 2^2 - 1 = 4 - 1 = 3 \] Thus, \[ \tan^2(\sec^{-1}(2)) = 3 \] **Step 2: Calculate \(\cot^2(\csc^{-1}(3))\)** Let \( y = \csc^{-1}(3) \). By definition, this means: \[ \csc(y) = 3 \] Using the identity \(\csc^2(y) = 1 + \cot^2(y)\), we can derive: \[ \cot^2(y) = \csc^2(y) - 1 = 3^2 - 1 = 9 - 1 = 8 \] Thus, \[ \cot^2(\csc^{-1}(3)) = 8 \] **Step 3: Combine the results** Now we can combine the results from Step 1 and Step 2: \[ \tan^2(\sec^{-1}(2)) + \cot^2(\csc^{-1}(3)) = 3 + 8 = 11 \] ### Conclusion for Statement 1: Since we have shown that: \[ \tan^2(\sec^{-1}(2)) + \cot^2(\csc^{-1}(3)) = 11 \] Statement 1 is **True**. --- ### Statement 2: We need to analyze whether: \[ \tan^2(\theta) + \sec^2(\theta) = 1 = \cot^2(\theta) + \csc^2(\theta) \] **Step 1: Analyze \(\tan^2(\theta) + \sec^2(\theta)\)** Using the identity: \[ \sec^2(\theta) = 1 + \tan^2(\theta) \] This means: \[ \tan^2(\theta) + \sec^2(\theta) = \tan^2(\theta) + (1 + \tan^2(\theta)) = 2\tan^2(\theta) + 1 \] This cannot equal 1 unless \(\tan^2(\theta) = 0\), which is not generally true for all \(\theta\). **Step 2: Analyze \(\cot^2(\theta) + \csc^2(\theta)\)** Using the identity: \[ \csc^2(\theta) = 1 + \cot^2(\theta) \] This means: \[ \cot^2(\theta) + \csc^2(\theta) = \cot^2(\theta) + (1 + \cot^2(\theta)) = 2\cot^2(\theta) + 1 \] This also cannot equal 1 unless \(\cot^2(\theta) = 0\), which is again not generally true for all \(\theta\). ### Conclusion for Statement 2: Since both parts of Statement 2 are not true, we conclude that Statement 2 is **False**. --- ### Final Conclusion: - Statement 1 is **True**. - Statement 2 is **False**.

To solve the given question, we need to analyze both statements step by step. ### Statement 1: We need to prove that: \[ \tan^2(\sec^{-1}(2)) + \cot^2(\csc^{-1}(3)) = 11 \] **Step 1: Calculate \(\tan^2(\sec^{-1}(2))\)** Let \( x = \sec^{-1}(2) \). By definition, this means: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

Prove that 1+cot^(2) theta = cosec^(2) theta

prove that : tan ^(2) (sec ^(-1) 2) + cot ^(2) (cosec ^(-1)3) = 11.

Prove that : "tan"^(2)("sec"^(-1) 2)+"cot"^(2)("cosec"^(-1) 3)=11 .

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

What is the value of (tan^2theta-sec^2theta)/(cot^2theta-cos e c^2theta) ?

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2...

    Text Solution

    |

  2. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  3. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  4. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  5. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |

  6. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  7. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  8. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  9. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  10. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  11. If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal t...

    Text Solution

    |

  12. For real numbers x and y , define x\ R\ y iff x-y+sqrt(2) is an irrati...

    Text Solution

    |

  13. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  14. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  15. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  16. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  17. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |

  18. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  19. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  20. Which of the following pair of functions are identical ?

    Text Solution

    |