Home
Class 12
MATHS
If alpha is a real root of the equation ...

If `alpha` is a real root of the equation `x^(2)+3x-tan2=0` then `cot^(-1)alpha+"cot"^(-1)1/(alpha)-(pi)/2` can be equal to

A

`0`

B

`(pi)/2`

C

`pi`

D

`(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \cot^{-1} \alpha + \cot^{-1} \frac{1}{\alpha} - \frac{\pi}{2} \), given that \( \alpha \) is a real root of the equation \( x^2 + 3x - 10 = 0 \). ### Step-by-Step Solution: 1. **Find the roots of the equation**: We start with the quadratic equation: \[ x^2 + 3x - 10 = 0 \] We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = 3, c = -10 \). \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1} \] \[ = \frac{-3 \pm \sqrt{9 + 40}}{2} \] \[ = \frac{-3 \pm \sqrt{49}}{2} \] \[ = \frac{-3 \pm 7}{2} \] This gives us two roots: \[ x_1 = \frac{4}{2} = 2, \quad x_2 = \frac{-10}{2} = -5 \] Since we are interested in the real root, we can take \( \alpha = 2 \) (as it is a positive real root). 2. **Evaluate \( \cot^{-1} \alpha + \cot^{-1} \frac{1}{\alpha} \)**: We know that: \[ \cot^{-1} \alpha + \cot^{-1} \frac{1}{\alpha} = \frac{\pi}{2} \] This is a standard result from inverse trigonometric identities. 3. **Substituting into the expression**: Now, we substitute this result into our expression: \[ \cot^{-1} \alpha + \cot^{-1} \frac{1}{\alpha} - \frac{\pi}{2} = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] 4. **Conclusion**: Therefore, the value of \( \cot^{-1} \alpha + \cot^{-1} \frac{1}{\alpha} - \frac{\pi}{2} \) is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the expression \( \cot^{-1} \alpha + \cot^{-1} \frac{1}{\alpha} - \frac{\pi}{2} \), given that \( \alpha \) is a real root of the equation \( x^2 + 3x - 10 = 0 \). ### Step-by-Step Solution: 1. **Find the roots of the equation**: We start with the quadratic equation: \[ x^2 + 3x - 10 = 0 ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha is a positive root of the equation x^4 +x^3 -4x^2 +x+1=0 then alpha +1/alpha

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha is a root of the equation 4x^(2)+3x-1=0 and f(x)=4x^(2)-3x+1 , then 2(f(alpha)+(alpha)) is equal to

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

If alpha is a root of the equation 4x^2+2x-1=0, then prove that 4alpha^3-3alpha is the other root.

Let alpha and beta be two real roots of the equation 5cot^2x-3cotx-1=0 , then cot^2 (alpha+beta) =

If alpha and beta are the roots of the equation x^2 + 5x-49=0 , then find the value of cot(cot^-1 alpha + cot^-1 beta) .

If alpha is the only real root of the equation x^3 + bx^2 + cx + 1 = 0 (b < c) , then the value of tan^-1 alpha+ tan^-1 (alpha^-1) is equal to :

Let cot alpha and cot beta be two real roots of the equation 5 cot ^(2) x- 3 cot x-1=0, then cot ^(2)(alpha + beta)=

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The numerical value of cot(2sin^(-1)\ 3/5+cos^(-1)\ 3/5) is

    Text Solution

    |

  2. Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11. Statement -...

    Text Solution

    |

  3. If alpha is a real root of the equation x^(2)+3x-tan2=0 then cot^(-1)a...

    Text Solution

    |

  4. If sin^(-1)((sqrt(x))/(2))+sin^(-1)((sqrt(1-(x)/(4)))+tan^(-1)y=(2pi)/...

    Text Solution

    |

  5. If xlt0, then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

    Text Solution

    |

  6. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  7. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  8. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  9. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  10. If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal t...

    Text Solution

    |

  11. For real numbers x and y , define x\ R\ y iff x-y+sqrt(2) is an irrati...

    Text Solution

    |

  12. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  13. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  14. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  15. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  16. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |

  17. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  18. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  19. Which of the following pair of functions are identical ?

    Text Solution

    |

  20. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |